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ABSTRACT 

This research develops exact methods to calculate project duration distributions and 

to calculate Van Slyke's (1963) criticallly for arrows, the probability that an arrow is on a 

critical path, assuming nonnegatlve integer duration distributions. These calculations 

for project duration distributions correct estimates made by the Program Evaluation and 

Review Technique (PERT), and the Van Slyke critlcality calculations extend the arrow 

critlcality ansdysls by the Critical Path Method (CPM) Into the probabilistic realm. 

Exact methods for calculating project duration distributions and Van Slyke's 

criticallly sire demonstrated on series networks, parallel networks, parallel-series 

networks, and the Wheatstone network. The Van Slyke criticallly equation for parallel 

networks is in a form that appears to Improve upon one proposed by Dodln & 

Elmaghraby (1985). The present form Is generalized to, In principle. Include sill 

networks. 

The exact methods are enhanced by developing a procedure to limit the number of 

calculations needed to analyze large networks. The procedure identifies paths through a 

large network, calculates the minimum and maximum path durations, and ranks the 

paths by duration. A smaller skeletal network is constructed from the arrows of the 

longest paths and is analyzed by exact methods. The procedure emphasizes accuracy for 

the longer project durations, of greatest concern to project managers and schedulers, 

while limiting the number of necessary calculations. 

The procedure for large networks is iUustrated on the 40-arrow Klelndorfer (1971) 

network. Of the 51 Klelndorfer paths, the procedure selected 6 paths to construct a 

skeletal network. Analysis of the skeletal network yields a project duration distribution 

that is correct in Its range and in the duration probabilities for the upper 5% of the 

distribution. Analysis results are compared with SLAM II and FORTRAN simulations. No 

arrow critlcality appears to be seriously miscalculated. The project duration distribution 

is calculated to be bimodal. In keeping with the simulation. 

Conditions under which the Just mentioned blmodality can occur are determined for 

parallel, normally-distributed paths. The large-network procedure warns when these 

oddly shaped distributions are possible. 
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INTRODUCTION 

Projects such as building highways, erecting dams, and constructing airports require 

a great deal of capital over extended time periods. Because of contractual, financial, and 

resource requirements, project plemnlng and scheduling are Important concerns for all 

involved. Project forecasting Is complicated by the uniqueness of the project, the lack of 

repeat measurements, and the complexity of relationships between necessary activities. 

Common practice models relationships among project activities in graphical form by 

arrows Interconnecting nodes. The graph Is commonly called a network. Arrows 

represent project activities, and nodes represent events (Kelley & Walker. 1959) such as 

"Foundation Pouring Completed." "Start Project." or "Project Completed.". Associated 

with each activity's arrow Is a beginning node, an ending node, and a time duration. A 

duration is the ttaie it takes to complete an activity (arrow) once it has been steirted. 

Arrows point from their starting nodes to their ending nodes. An activity may not start 

imtU Its beginning event has been completed; or. In modeling terms, an arrow may not be 

processed until its starting node has been realized. All activities on the network must be 

performed. None are performed more than once. Networks have one definite starting 

node, called a source node, and one defltoite ending node, called a sink node. Events 

(nodes), themselves, take no time to complete. Their completion times are wholly 

dependent upon the activities (arrows) that precede them. 

Project planning is aided by the enhanced communication that a schedule network 

represents. The visualization of relationships among project activities helps everybody 

understand how the project objectives are to be accomplished. Because network event 

times and durations are better estimated, plans are made to provide resources in a timely 

manner, thus helping to Insure successful completion of the project (Granof, 1983). 

When problems are found with the project plan, the effectiveness of proposed changes 

are rapidly determined by a revised network forecast (Miller, 1963). 

Two forecasting methods are the Critical Path Method (CPM) eind the Program 

Evaluation and Review Technique (PERT). CPM assumes deterministic arrow durations. 

It was designed "to determine how best to reduce the time required to perform routine ... 

work" (Moder, Phillips, & Davis, 1983, p. 13). CPM identifies a critical path through the 

network where a path Is a directed sequence of arrows leading through a network from 

start to finish, sind a critical path has a time duration equal to the shortest possible 
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project duration. Path durations are determined by the summing of arrow durations 

from the constituent activities. The difference between the critical path's duration and 

another path's duration is called the float. Analysis of the float yields an indication of 

the critlcallty of a path or any activity on lie path. 

PERT was designed to accommodate statistical estimates for its activity durations. 

"The time estimates are obtained from responsible technical persons and are 

subsequently expressed in probabUity terms" (Malcolm, Rosenbloom. Clark, & Fazar, 

1959, p. 646). In other words, any given duration has a probability associated with it. 

The distributions are assumed to be unimodal. Independent, and finite In range (Martin, 

1965). From whatever the distributions are, PERT calculates activity means and 

variances. Using the means, one critical path is found throu^ the PERT network. 

Summing the mean and variances of activities on this path tends to 3^eld the mean and 

variance of a normal distribution because of the Central Limit Theorem. The problem is 

that a path's distribution of time Is not necessarUy the project's distribution of time. 

The authors of PERT knew their "estimated expected time of events are always too 

small" (Malcolm, Rosenbloom, Clark, & Fazar, 1959, p. 654). They kept the estimates for 

simplicity's sake. Estimates are too small because the designated critical path Is not, In 

fact, always critical. Other paths may become critical when larger values happen to 

manifest themselves. The result is a raising of the project duration mean. 

For stochastic networks, like those attributed to PERT, Van Slyke (1963) estimated 

the probabilities that arrows are on a critical path by simulation. This definition of arrow 

critlcallty shall be referred to as the Van Slvke critlcallty. MacCrimmon and Ryavec 

(1964) suggested focusing on Van Slyke criticalltles rather than focusing on critical paths 

because "the PERT-calculated critical path does not necessarily contain the most critical 

activities" (p. 36). The Van Slyke critlcallty should "focus management attention on the 

10 to 20 per cent of the projects activities that are most constraining" (Moder, Phillips, & 

Davis, 1983, p. 19). 

Project overruns occur when actual project completion times are higher them the 

scheduled time. The probability of a project rimnlng over Its scheduled time Is Important 

to management because It represents a risk. Schedule overruns typically have penalties 

associated with them. For that reason, the right tall of the forecasted distributions Is of 

utmost Importsince. 
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In short, PERT has three problems: because of Its dependency on one path. Its 

offered distribution is questionable so that it provides an incorrect distribution with 

which to estimate the distribution tails. Also, Its suggested mean is recognized to be too 

low. Finally, PERT, unlike CPM, does not IdentUy critlcetl paths or activities. Attempts to 

remedy these shortcoming are addressed in the Literature Review. None, however, have 

been wholly successful. 

The research presented here analyzes stochastic input, like PERT's. to better estimate 

project duration distributions and Vein Slyke arrow criticalltles. First, the research 

assumes, in addition to the Moder, PhiUips, & Davis (1983) network definitions, that 

arrow inputs are in the form of integer-valued distributions. Second, methods for 

calculating duration distributions to network nodes, especially the sink node, are 

reviewed and developed. Third, calculation methods for Van Slyke arrow criticalltles are 

discussed. Fourth, the duration distribution and Van Slyke crlticallty calculation 

methods are Incorporated into an algorithm. Recognizing that many project networks 

become unwieldy computationally, the algorithm addresses a relevant subset of the input 

distributions. Fifth, the algorithm is tested on a published discrete network and Its 

conclusions are compared to the results of a SLAM II simulation. Finally, the research 

explains why schedule network duration distributions might have blmodal rather than 

Normal form. The algorithm provides exact right tall probabilities, the exact duration 

range, good left-tall probabilities, the shape of the duration distribution, and a list and 

ranking of the critical arrovi-a contributing to project overruns. 
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LITERATURE REVIEW 

Literature relevant to project forecast planning and critical component analysis is 

classified into the categories of Statistical Studies, Algorithms, Bounding Studies, 

Simulation, and Critlceditles. These should be compared with the outputs of PERT: 

Outputs include the expected time for the completion of each event, the 

identification of slack and critical areas in the programs, an expression of the 

probability of equaling or meeting the current schedule and the specification of 

the latest date by which eveiy event must be completed in order to meet the 

end-objective deadline (Malcolm, Rosenbloom, Clark. & Fazai, 1959, p. 662). 

Statistical Studies 

Cleirk (1961), one of the original PERT authors, addressed the problem of estimating 

the distribution of normal, psirallel paths. He does so by generating four moments for 

various combinations of means, variances, and correlations of one path to the first path's 

standard normal distribution. Clark observed that the maximum of two normals is not 

another normal distribution. 

MacCrimmon and Ryavec (1964) attempted to do a comprehensive analysis of the 

PERT model. Among their analyses is an analysis of the network duration probabilities. 

The PERT was found to never exceed the true duration's expectation. The "pEU-allelism in 

a network will tend to skew the [node duration] distribution to the left" (MacCrimmon and 

Ryavec, 1964, p. 35). Dominated paths should be dropped from the network. 

Martin (1965) focused on reducing the time distributions of the activities into an 

equivalent time distribution for the project. He does so by fitting pol3momlals to the 

arrow distributions. He has recipes to combine polynomials into new ones more 

representative of the project duration. Although the polynomials were cumbersome, his 

concepts are statistically valid. For any two arrows in a pure series network, reduction is 

performed by accumulating the probabilities from the two distributions whose values 

sum to equal the new time. For a pure parallel network, reduction Is performed by 

multiplying the cumulative distribution functions Icdfs] to derive the reduced network's 

cdy. The duration distribution of some networks may be exactly found by appropriately 

using paraillel reductions and series reductions. 
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Reducing networks with complex dependencies may require conditioning. Once 

arrows common to two paths have their times iixed, the remaining parallel activities may 

be treated as independent, making the product of the two cdfs equal to the cdf of the 

conditioned distribution of the dual path duration distribution. To complete the 

reduction, each independent cdf is weighted by the conditional probabilities and then 

summed. He also used conditioning to estimate the probability that a given arrow is on a 

critical path. He flnds this "Critlcality Index" (Martin, 1965, p. 62) by first CEilculating the 

probability that a path is critical, then siunmlng the crltlcalities of all paths that go 

through particular arrows. 

Dodin (1985a) points out that the dependencies between paths makes it hard to 

identify critlcsil paths and activities. "The difficulty caused by the dependency between 

the paths has led to the publication of more than 30 papers dealing with various issues 

of the stochastic network" (Dodin, 1985a, p. 223). He offers, as a theorem, that a 

network is not completely reducible if it contains what he calls an interdictlve graph, 

more commonly known as the Wheatstone. By duplicating eirrows in the network, Dodin 

resolves his Treduclbility problem, but alters the final distribution. 

Dodin and Sirvanci (1990) explored the Impact of the Extreme Value Distribution on 

stochastic networks. They depict a mechanism for parallel activities that Is conceptually 

analogous to the Central Limit Theorem for activities in series. The theory says that as 

the number of parallel, independent, identical distributions become large, their 

maximums will approach the The Extreme Value Distribution. "The extreme value 

theoiy, which is based on the maximum of Independent and identically distributed 

random variables, is used to develop more accurate approximations and still be practical" 

(Dodin & Sirvanci, 1990, p. 398). The distribution has an expected value that is greater 

than the constituent arrows and is right skewed. 

The PERT method approximates the network by only one of its longest paths, in 

the extreme value case, it is approximated by a network consisting of all the 

dominating paths of the original network. As a result, when there is only one 

dominating path in the network, and the probability of the second dominating 

path is to be realized as the longest path is quite small, the PERT method will 

tend to give accurate results. However, when there are more than one dominating 

path, it is suggested that the extreme value approach be used to determine the 

mean and the variance (Dodin & Sirvanci, 1990, p. 408). 
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Bounding Distributions 

Because node time distributions from networks with complex dependencies are 

difficult to generate analytically, distribution bounds have been studied. PERT provides 

a lower-bound for the distribution mean. Fulkerson (1962) provides a tighter lower 

bound. He handles the complexities by working with activity means and ignoring path 

dependencies at every node. Kleindorfer (1971) provides an upper bound while Shogan 

(1977) constructed tighter bounds than either Kleindorfer or Fulkerson. Shogan's 

analysis on the large 22-Node, 40-Arrow Kleindorfer (1971) network yielded a bounding 

cumiilatlve distribution function. Robillard and Trahan (1977) generated bounds for the 

distribution moments. 

Simulations 

Monte Carlo simulations have been used to estimate both completion time 

distributions and arrow critlcalitles. Random ssimples from each arrow's distribution are 

assigned to the arrows to build a network realization. Observations from each realization 

are recorded. Through many repeated realizations, probability distributions of the 

network node durations and the probability that each activity will be critical are 

estimated. Van Slyke (1963) did the first published analysis of PERT using FORTRAN, 

and Prltsker and Kivlat (1969) addressed network simulation using GASP which Is a 

forerunner of SLAM II (Prltsker, 1995). 

Van Slyke (1963) sinalyzed with Monte Carlo simulations a variety of PERT networks. 

He used 10,000 network realizations to generate his numbers. The time for simulation 

was linear with the number of random seunples. He states two methods to reduce 

random variables by taking activities out of the network. The first disposes of all 

activities whose maximum durations do not impact the network length when all others 

are set to the minimum value. The second analyzes a smaller number of Monte Carlo 

simulations, and discards any activities which were not on a sample crlticeil path. He 

showed graphically, the underestimating of PERT in parallel configurations. He also 

generated distributions that modeled the extreme value distribution but were not 

Identiiled as such. One of his distributions (Van Slyke, 1963, p. 857) was skewed right 

with what appears to be a lump In the right tall. 
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Burt and Garman (1971) reduced the number of random numbers needed by 

separating arrows by whether they were on Just one path or not. Sampling from the 

one-path activities was performed much less frequently because they were used to 

condition the rest of the network. Thus, the procedure was neuned "Conditional Monte 

Carlo." "The usefulness of conditional Monte Carlo depends upon the number of 'unique' 

activities in a given network" (Burt & Garman. 1971, p. 211). 

Sigal, Pritsker, and Solberg (1979) introduced the Uniformly Directed Cutset (UPC) 

for stochastic network analysis. The uniformly directed cutset is "a set of arcs [arrows] 

which connect a set of nodes, W, which contains the network source, with its 

complement, W in the set of network nodes, which contains the network sink" (Sigal, 
Pritsker, & Solberg, 1979, p. 378). The UDC replaces the conditioned activities identified 

by Burt and Garman. After Identifying the UDC, their edgorlthm calls for setting the 

finish time to a particular duration called a base point. The cumulative probability of the 

base point Is then based upon the sampling of all activities not on the cutset. To 

generate a complete distribution, the algorithm must Iterate throu^ all distribution 

times. 

Algorithms 

Methods for estimating network completion times using discrete distributions have 

been performed by Fulkerson (1962), Martin (1965), Kleindorfer (1971), and Shogan 

(1977), all of whom have been discussed. Others have been Keefer & BodUy (1983), 

E>odin (1985a & 1985b), Hagstrom (1988), £md Bonett & Deckro (1993). 

Anklesaria & Drezner (1986) assume a multivariate normal distribution for path 

durations in their analysis. They recommend trimming nodes from the network that 

have no chance of being on a critical path. They claim "RoblllEird emd Trahan's lower 

bound is quite effective for relatively high probabilities but is very far from the actual 

probabilities for low probabilities" (Anklesaria & Drezner, 1986, p. 813). 

Bonett & Deckro (1993) argue multinomial representation of activity durations can 

lead to an exact discrete distribution for the project duration. They calculate duration 

probabilities by summing across the independent ^rows the probabilities of their 

combinations. The method yields exact results for parallel-series networks although 

they included a distribution with a total probability of 0.9 as part of their example . For 



www.manaraa.com

8 

more complicated networks, they duplicate nodes and arrows ruining their exactness 

efforts. 

Sculli (1983) presents a method to approximate the completion times of PERT 

networks by assuming that all arrows are normally distributed. He assumes path 

independence and adds dummy nodes to limit to two the number of arrows terminating 

at any node. 

The Normality assumption for individual activity duration has often been made in 

the literature. And this can be Justified by the fact that most large networks can 

be reduced to a guide network, where a completely independent path becomes one 

activity. The central limit theorem justifies the Normality assumption for the 

duration of activities in the guide network (Sculli, 1983, p. 157). 

The Sculli and Shum (1991) technique is based on multivariate normal distributions 

and yield means and variances very close to those of simulation. They observe that there 

is a "perennial discussion as to why projects are always late.... The problem stems from 

what appears to be an inabUity to accurately estimate the completion time distribution of 

individual activities.... This indicates that there is still considerable research potential in 

... the overall time analysis of networks" (Sculli & Shum, 1991, p. 7). 

Dodln (1984) picks the most critical paths in the network by ranking cumtilative 

distributions for each node's completion time. The cumulative distributions are only 

approximate because all activities ending at the node are assumed to be independent. 

Recognizing that ranking of the top paths do not necessarily correspond to rankings of 

probabilities that paths will be critical, Dodtn maintains that the two top groups will be 

the same or nearly the same. He argues that his result "is very close to the exact 

distribution" (Dodin, 1985b, p. 262) because simulations converge toward it. 

Criticallty 

Few have addressed how to quantify critlcsility by other than simulation methods. 

Dodin & Elmaghraby (1985) present an approximation, and Williams (1992) suggests 

some possible alternatives such as using the correlation coefficient between an activity's 

duration and that of the project. Correlation is unreliable because of nonlinearity of the 

constituent covarlance variable. 
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Like the Dodin procedure described before, Dodin & Elmaghraby (1985) calculate the 

cumulative distributions of node values assuming independence of paths. With their 

procedure, they hope to avoid the time consuming tasks of "enumeration of all the paths 

in the activity network, the approximation of the corresponding critical paths, and the 

identification of the paths passing through each activity" (Dodin & Elma^raby, 1985, p. 

209). Arrow crlticalities are approximated by assuming paths which merge at nodes are 

independent. The criticality of one of the incoming paths Is calculated from the duration 

distributions of the paths from the source node. Although their equation for crlticsdity is 

correct for Independent paths, in general the paths are not Independent. The results is 

to corrupt criticality from a probability of being on the critical path to merely an index. 

One of their criticality examples had a value of "1.0556" (Dodin & Elma^raby, 1985, p. 

214) which clearly can not be interpreted as a probability. 
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CALCULATION OF NETWORK DISTRIBUTIONS 

With over thirly-flve years of research, no one has been able to generate, in general, 

the duration distribution for networks with many activity arrows without extensive 

enumeration. Complete enumeration for a network quickly becomes Impractical. For 

example, the Kleindorfer (1971) network with 40 activity arrows would require over 
2X10^^ combinations to analyze completely, and it is small compared to projects that 

have had hundreds of activities. 

Stochastically discrete networks with one source and one sink node and no cycles are 

analyzable for project distributions according to the methods presented in this chapter. 

The effects of discrete distributions are exEimined before looking at reducing network 

arrow distributions into one distribution representing the project network's total 

duration. Network reductions techniques will be discussed for discrete networks that are 

in series, in parallel, in a combination of series and parallel, and in more complex 

arrangements as introduced by Mcirtin (1965) but without assuming polynomial 

distributions. Martin used conditional probabilities for more complexly arranged 

networks. Bonett & Deckro (1993) attempted to find project duration distributions by 

modeling discrete arrow distributions by multinomials and analyzing the combinations of 

arrow durations. They were successful for parallel-series networks but not for more 

complex networks. This chapter will merge the statistically correct methods, originally 

for continuous distributions, from Martin (1965) with the multinomial concept from 

Bonett & Deckro (1993). These three modes of reductions are integrated to reduce 

distributions within a network to an equivalent distribution representing the completion 

time of the entire project. The three modes of series reduction, of parallel reduction, and 

of conditional probabilities are Integrated to reduce network duration distributions into 

the distribution of the project's duration. All methods in this chapter wUl focus on 

statistically correct procedures. 

The Discrete Distributed Network 

All activity distributions are assumed to be independent, discrete, and unlmodal. The 

Independent smd unlmodal assumptions have been standard throughout the literature 

and are generally accepted In Industry as well. The discrete distribution Is warranted on 
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two counts. First, managers within the construction industry typically review their 

resource requirements on a periodic basis making resource allocations between reviews 

rare. First, because of periodic resource requirement reviews, union rules, and time lost 

in mid-day transportation of, resources are assigned by the entire day. The costs of 

allocating resources in a continuous nature can be no better than whole day assignments 

(Wagner & Whltin, 1958 and Hax & Candea, 1984). Therefore, any partial days in a 

schedule will be allocated the full day. Second, probabOity calculations are much easier 

for discrete values. Many continuous distributions are quantifled through numerical 

integration which Is a form of discrete approximation. With activities being estimated for 

5 to 25 days, and projects commonly running over a year, there is enough resolution to 

build meaningful distributions. 

One complicating factor of the discrete distributions is that It is possible to have ties: 

where with continuous distributions, there is no probability of ties. Industiy has felt 

many times the pressure of simultaneous task completions. This drawback is, in reeillty, 

an Important element of modeling the application. Some of the studies that have ignored 

the possibility of ties in completion times have been Fisher, Saisl, & Goldstein (1985), 

Bowman (1995), Clark (1961), and Kulkeirni & Adlakha (1986). 

The Series Reduction Operation 

Martin (1965) reduced the duration distributions of activity arrows arranged in series 

by convoluting probabilities. The convolution operation forms a new time distribution by 

accumulating the probabilities from the distributions in the series into a single, 

representative distribution. An ex£imple will Olustrate the procedure. 

Consider a network where two activity arrows are In series. In reduction, Activities 1 

and 2 (see Figure la) would be replaced by an equivalently distributed activity, Activity 3 

(see Figure lb). This reduces the size of the network by one activity arrow. If the 

distributions of Activities 1 and 2 were assigned according to Table 1, the minimum 

duration for Activity 3 is 5 duration units, and its maximum is 10. These are found by 

summing the minimum and maximum values, respectfully, of Activities 1 and 2. 

Because they are independent, the probability of Activity 3 taking 5 time units Is found 

by multiplying the probabUltles of Activity 1 and Activity 2 taking on their lowest values: 
Pr[Act3 = 5] = Pr[Acti =3,Act2 =2] = Pr[Acti =• 3] • Pr[Act2 = 2] = (0.1) • (0.3) = 0.03 • 
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Figure 1: Reduction of Arrows In Series Example, 
(a) Original Network, (b) Equivalently Distributed Reduced Network. 

Calculations for intermediary values are slightly more complex. The probability of a 

duration of Activity 3 is found by summing the product of probabilities that correspond 

to the pairs of durations from Activities 1 and 2. For a duration of 8 for Activity 3, 

combination of Activity 1 smd Activity 2 pairs are (3,5), (4,4), and (5.3). The resulting 

probability Is Pr[Act3 = 8] = (.2)(.3) + (.4)(.4) + (.3)(.3) = 0.31 • The other distribution values 

for Activity 3 are also listed in Table 1. 

The convolution operation is generalized by the following equation: 

Repeating the convolution operation on activities in a pure series network, wiU 

methodically reduce the network's arrows by one until there is only one activity arrow 

left. When convoluting a large number of discrete distributions, the resulting 

distribution wUl be a discrete version of the normal distribution by the Central Limit 

Theorem. It is discrete instead of continuous because the constituent distributions 

started discrete, and the sum of integer variables is an integer variable (Bishop, Flenberg, 

& Holland, 1975). 

Max(Al)+Max(A2) f Mln(Max(Al). J-Mln(A2)) 

J=Mln(Al)+Mln(A2) I I=Max(Mln(Al), J-Max(A2)) 

(1) 

where A3 is the distribution of the representative arc, 

A1 Is the distribution of one arc In series, 

A2 Is the distribution of the other arc In series, and 

fA3t Is the probability that distribution A3 takes on time t. 
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Table 1: Probability Distributions for Series Reduction Example. 

Activity 

Duration 

Totals Activity 2 3 4 5 6 7 8 9 10 Totals 

#1 0.10 0.20 0.40 0.30 1.00 

#2 0.30 0.40 0.30 1.00 

#3 0.03 0.10 0.23 0.31 0.24 0.09 1.00 

The Parallel Reduction Operation 

For a pure parallel network (see Figure 2), reduction of Arrow 1 and Arrow 2 into the 

equivalent distribution of Arrow 3 is performed by considering each time duration. The 
probability of achieving a given time period t on the equivalent distribution is the sum of 

three possibilities. First, both Arrow 1 and Arrow 2 have duration t. The other two 

possibilities are that Arrow 1 has value t and Arrow 2 has something less or vice versa. 

The probability of Activity 3 taking on duration t is expressible by the formula 

Pr [A3 = t] = Pr [(Al = t) D (A2 = t)] + Pr [(Al = t) n (A2 < t)]+Pr[(Al < t) n (A2 = t)] . 

Figure 2: Parallel Reduction Example. 
(a) Origineil Parallel Network, (b) Equivalent Reduced Network. 



www.manaraa.com

14 

Recognizing that the probability of all values being less than t defines the cumulative 

distribution (Walpole & Myers, 1978, p. 34), Indicated by F, and Indicating the 

probability density function by f, the equation may also be expressed by 

(2) 

With some manipulation, a more straightforward method for calculating the 

probabUity is obtained. 

fSt =flt(f2t+F2t_i) +F'lt.if2t + [Flt.iF2t_i -Plt-lP'2t.i] 

fSt =flt(f2t+F2t_i) +^11-1(^21+^21.1) -Flt-if'2t.i 

f3t = (flt+P'lt-l)(f2t+F2t-i) -Flt-1^2t.i 

f3t=F'lt^^2t-Flt-i^^2t.i 

^31 = ^11^21 

f3t=F3t-F3t.i 

(3) 

(4) 

In words, the distribution of the equivalent activity is csdculated throu^ its 

cumulative distribution that is the product of the cumulative distributions of Arrow 1 

and Arrow 2. An example Is given in Table 2. The probabUity density functions of Arrow 

1 and 2's distributions are converted into cumulative distribution functions (cdf). The cdf 

product is calculated to generate the cdf of activity 3. Finally, the pdf of activity 3. the 

network-reducing equivalent activity, is derived by sequentially subtracting from its cdf 

probabilities the next lowest cdf probability. 

Parallel - Series Reduction 

When networks contain activities in series and parallel, the number of its duration 

distributions may be reduced, appropriately, by parallel and series operations. Most 

networks can be dramatically reduced, £ind many are reducible to a single arrow 
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Table 2: Parallel Network Reduction Exsunple. 

Duration Units 

1 2 3 4 5 6 

Activity #1 p.d.f. 0.20 0.30 0,30 0.20 0.00 0,00 
Activity #2 p.d.f. 0.00 0.20 0.40 0.20 0.10 0,10 

Activity #1 c.d.f. 0.20 0.50 0.80 1,00 1.00 1,00 
Activity #2 c.d.f. 0,00 0.20 0.60 0,80 0,90 1.00 

Activity #3 c.d.f. 0.00 0.10 0,48 0.80 0,90 1.00 

Activity #3 p.d.f. 0.00 0.10 0.38 0.32 0.10 0.10 

distribution of duration. For example, consider the network depicted In Figure 3a. The 

initial network looks ungainly, but arrows 1 and 2 are readily observable to be in series. 

Reducing the distributions of sirrow 1 and 2 into a distribution represented by arrow 8 

yields the network shown in Figure 3b. Further series reduction is possible on arrows 5, 

6, and 7. Reduction is accomplished by first reducing via the series operation two 

consecutive arrows, say 5 and 6, into arrow 9, then combining it with the third activity, 

arrow 7, to derive activity lO's distribution. Figure 3d illustrates the resulting network. 

The distributions of arrows 4 and 10 are then reducible by the parallel operation. The 

result is Figure 3e where Arrow 11 replaces the previous pair. A series reduction is 

performed on arrows 3 and 11 in Figure 3e, and a parallel operation is performed on the 

network of Figure 3f to yield the sin^e distribution of Arrow 13 shown in Figure 3g. 

In general, network reductions are best performed by reducing all activities in series 

before Identifying and performing parallel reductions. For one reason, projects are rarely 

estimated with parallel activities — they would be combined into only one activity 

initially and estimated on that basis. Often, however, there are parallel paths, with one 

or more paths consisting of activities In series. For another reason, series are easier to 

detect. They are detectable by finding nodes that have one entering and one 'exiting 

arrow. A pair of arrows are identified as pEirallel when they both have the same stsirting 
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13 •<S) 
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Figure 3: Peu-allel - Series Reduction Example. 
(a) Unreduced Network, (b) Series Reduced Network, (c) Series Reduced Network, 

(d) Series Reduced Network, (e) Parallel Reduced Network, (f) Series Reduced Network, 
(g) Parallel Reduced Network to Project equivalent Distributed Arrow. 
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and ending nodes. This is a more Intensive search procedure. An automated 

parallel-series reduction program should perform a31 series operations, search for a 

parallel arrow, if one is not found quit; otherwise, process one parallel reduction and 

begin again searching for series reductions. Each series operation reduces the niunber 

of nodes by one and the nvmiber of arrows by one. Each parallel operation reduces the 

number of arrows by one, but does not affect the number of nodes In the network. 

In this manner, large networks are reducible to usually much smaller, but potentially 

complex ones. The simplest nontrivial network that is irreducible is the Wheatstone 

Network (see Figure 4a). The next section addresses how to reduce the wheatstone and 

other networks irreducible by series-parallel operations. 

Network Reduction By Conditioning 

Calculation of distributions in networks that can not be reduced by either parallel or 

series reductions requires a more robust technique: conditioning. Short of looking at all 

combinations of activity durations, conditioning is the only statistical method that will 

completely enumerate a network, and the number of duration combinations of a network 

can quickly become unmanageable. To condition a network, some arrows are identified 

for conditioning and others are conditioned. The conditioning arrows are all assigned 

durations from their distributions until all combinations of dxiratlons for the conditioning 

arrows have been assigned. A probability^ is associated with each combination of 

conditioning arrow durations. The conditioned arrow distributions are then, hopefully, 

easier to reduce. For every conditioning combination of durations, the reduced 

distribution durations from the conditioned network is multiplied by the combination 

probability and summed Into the project duration distribution. In the limit, conditioning 

all arrows will result in analyzing all combinations of arrow durations. There are also 

methods that feature either sampling from the network distributions or setting limits on 

them, but these are only approximations. (See the Literature Review chapter for a 

discussion.) 

The simplest network that requires conditioning Is a network In the Wheatstone 

configuration (see Figure 4a). The wheatstone has 5 arrows, 4 nodes, and 3 paths. 

Examination of the three paths (see Figure 4b) reveeds that Arrow I is common to Paths 1 

and 2. and Arrow 5 is common to Paths 2 and 3. This makes both Path 1 and Path 3 
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<D Path 1 

Path 2 

Paths 
(b) 

Path 1 
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5-^ 2 & 3 
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Figure 4: Wheatstone Network Conflguration. 
(a) The Wheatstone Conflguratlon. (b) The 3 Paths. 

(c) Path Conflguratlon for Conditioned, Series, & Parallel Reduction. 
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correlated with Path 2 but not with each other. 

Dodln (1985b) devised a method to calculate the network duration distribution, but 

the Wheatstone network exposes a flaw. The Dodin (1985b) method starts from node 0 of 

Figure 4. The duration distribution at Node 1 is the duration distribution of Arrow I. 

Node 2, however, is the end of 2 independent paths. Therefore, its distribution is 

calculable by reducing the distribution of Arrows 1 and 3 by a series operation, then 

reducing the resultant distribution with that of Arrow 2's distribution by a parallel 

reduction operation. Under the Dodln method, the Arrow 4's distribution is reduced with 

Node I's distribution by a series operation, and Arrow 5's distribution is combined with 

Node 2's distribution by another series reduction. The resulting distributions are 

combined by a parallel operation to estimate the distribution of Node 3, The problem is 

that the independence assumption of the peirallel operation is violated — the two 

incoming distributions at Node 3 are correlated by the variance of Arrow 1, unless Arrow 

2's distribution dominates the distribution of series reduction of Arrows 1 and 3. 

The problem is resolvable by conditioning on Arrow I's duration distribution. 

Reorganizing the arrows Into the configuration as shown in Figure 4c facilitates analysis. 

Specifically, Arrow I starts each of 2 pathsets because it Is the path correlating arrow. 

Path 1 appears as before. The second pathset combines Paths 2 and 3 into a network 

skeleton which Is in a parallel-series arrangement. Msirtln (1965) generated path trees 

as appears in Figure 4b. but until now the trees have not been recomblned before the 

sink node. To analyze networks, conditioning fixes the durations of all eirrows preceding 

network splits. 

Once paths or pathsets are conditioned by fixing the values of conditioned arrows, 

distributions of the affected paths become independent and are calculable by using only 

parallel emd series reduction operations. To complete the reduction, each conditioned 

distribution Is weighted by the probability of the fixed V£dues occurring and then 

summed. This is in accordance with the Law of Total Probability (Taylor & Karlin, 1984). 

The conditioning operation is theoretically capable of reducing any network. At the 

conceptual limit, conditioning would have to be performed on every arrow and every 

arrow's duration resultiiig in total enumeration. For even moderately large networks, 

this would be prohibitive. Luckily, conditioning on every arrow Is rarely, if ever, 

necessary. 
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CRITICALITY CALCULATIONS OF NETWORKS 

Project management has adapted CPM because It identifies through critical paths, the 

arrows of a network that represent critical activities. The previous chapter addressed 

PERT's problem of estimating the duration of a project when arrows have probabilistic 

durations. This chapter will address the CPM problem of identifying which arrows 

contribute to the project duration; but unlike CPM. the network arrows will be assumed 

to have a distribution of durations. 

CPM takes deterministic Input and determines not only how long a project will take, 

but also critical arrows, via paths, to meeting the schedule. A problem arises with CPM 

when the activities modeled by its arrows do not exhibit predictable durations even 

though the activity methods are standardized. The deterministic Inputs of CPM become 

imcertain. Naturally, the degree of uncertainty is expressed by a probability distribution. 

Because the input parameters of CPM are uncertain as to their duration, the results of 

CPM also becomes uncertain. A critical arrow identified by CPM at given inputs is not 

necessarily critical for other inputs. Therefore, there is tmcertalnty of whether arrows 

will be critical to the project. Other arrows may become critical. To express this 

uncertainty, probabilities are assigned to the arrows to indicate how often they will be 

critical to the project. This is the definition of Crltlcality: 

Criticality • Pr (an arrow will be on one or more critical paths). (5) 

As Van Slyke states it, "this index is simply the probability that the activity (arrowl will be 

on the [a] critical path" (1963, p. 839). 

In developing methodologies for analyzing arrow criticalitles. a number of 

assumptions are made. One is that the project and project methods will have been 

designed and estimated. Fixed methods on the activities keeps the arrow duration 

distributions stationary (Taylor & Karlin. 1984) through time. Every arrow Identified 

must be performed with probability 1.00 and no additional arrows are performed. All 

arrows must be performed exactly once and then only after their precedent arrows are 

completed. The network structure does not change. Also, the distributions are assumed 

to be estimated in discrete probabilistic terms. Continuous distributions may have been 
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used to approximate the distribution of times, but the results will have been converted 

Into discrete units. 

Before delving into arrow criticallty calculations, 2 other network analysis methods 

wOl be presented. One will be an easy way to count the number of paths through 

complex networks, and the other will be how to identify all of the paths in a network. 

Both will be Illustrated on the 40-arrow Klelndorfer (1971) network. Path criticallty 

calculations are presented in four categories progressing in complexity. The result is a 

pair of equations that provide probabilistically correct Van Slyke criticallty calculations 

for parallel-series networks like Martin (1965) did for reductions of parallel-series 

network duration distributions. Finally, a methodology for calculating arrow crlticallties 

is developed for complex systems requiring conditioning. 

Path Identification 

Fundamental to the analysis of criticallties Is predicting how many paths there are 

through a network and then finding all of the paths predicted. Quantifying how many 

paths that are in large networks can be very confusing. Dodin (1985b, p. 252) claims 

"the identification of all paths ... can be a burdensome task." The following section will 

present both a method for counting the number of paths in a network and a method for 

identifying the paths. 

Counting the Number of Network Paths Since every schedviling network has one 

source node and one sink node, there is only one path entering a network, and only one 

path exiting a network. A pure series network, such as shown in Figure la, has only one 

path. The parallel network shown in Figure 2a, on the other hand has 2 paths through 

it. The path starting at the source node is first split Into the two network paths, £ind 

then are recombined or merged at the sink node. Because every arrow has both a source 

node and an ending node, the total number of arrows leaving all nodes must equal the 

total number of arrows ending at all nodes. 

Paths can be counted by tracking splits and mergers. A split occurs when a node 

starts more than one arrow: whereas a merge occurs when a node ends more than one 

arrow. For every node in a network, there Is one or more paths that can reach It. So 

long as the network does not change Its configuration, this number will always be the 
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same. Splits from a node have the effect of duplicating the path counts to that node. 

Each arrow in the split has the same number of path combinations to reach the end of 

the arrow as it took to reach its starting node. Merges, on the other hand, add the 

combinations of path counts from the starting nodes of all merging arrows. This 

suggests an algorithm. 

The algorithm is Illustrated on the Kleindorfer (1971) 40-arrow network shown in 

Figure 5. The algorithm procedure is presented in Table 3. The first coliunn of Table 3 

lists all of the nodes in the network. The second column lists all of the nodes that 

immediately precede the first column's nodes. The third column lists the path counts to 

the node listed in column 1. Node 0 is assigned a path count of "1" because it represents 

the single entry into the network. Next, a search is conducted to find an eligible node to 

assign a path count. An eligible node does not already have a path covmt, but all of its 

predecessor nodes do have path counts. If all nodes have assigned path counts, the 

number of paths through the network is read from the path count £issigned to the sink 

node, and the algorithm ends. A path count for an eligible node is calculated by 

summing the path counts from all of the node's immediate precedent nodes. Column 3 

in Table 3 also gives the summed path counts. 

The algorithmic path count of network paths can also start from the sink node rather 

than the source node. The node path counts are sums of path coimts from the Target 

nodes rather than preceding nodes, and the network path count is read from the source 

node rather than the sink node. The backward analysis of the Kleindorfer network is 

shown in the last 3 columns of Table 3. The network path counts are the same for both 

the forward and backward analysis. The simQarity is only applicable for the source and 

sink node path counts: the intermediate node path coimts do not generally agree. 

Identifying Network Paths To examine which arrows are on critical paths, it is 

imperative to identify the paths and to list the arrows on each path. As developed in the 

last subsection, the number(s) of splits and mergers at nodes determine the number of 

network paths. Meirtin (1965) modeled network paths as a tree. Each path on the tree 

started with the source node and ended with the sink node. Other than at the source 

node, the paths did not intersect, duplicating nodes and arrows on each path as needed. 

As a result, the number of sink nodes on the tree match the number of paths. The 

duplicating of nodes for each path is similar to the duplication of nodal path counts for 
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Figure 5: The 40 Arrow, 22 Node Kleindorfer (1971) Network. 
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Table 3: Path Counts of Klelndorfer (1971) 40-Arrow Network. 

Forward Path Counting Backward Path Counting 

Node 
Precedent 

Nodes Path Count 
Target 

Node Nodes Path Count 

0 None 1 21 None 1 

1 0 1 20 21 1 

2 1 1 19 20 1 

3 1 1 18 19,20 1+1=2 

4 2 1 17 20 1 

5 3.4 1+1=2 16 18,19 2+1=3 

6 2.4 1+1=2 15 16 3 

7 4 1 14 19 1 

8 2.7 1+1=2 13 14,16.17 1+3+1=5 

9 3 1 12 17 1 

10 5,8,9 2+2+1=5 11 13,15 5+3=8 

11 6 2 10 12 1 

12 5,7,10 2+1+5=8 9 10,14 1+1=2 

13 5,7,11 2+1+2=5 8 10.15.18 1+3+2=6 

14 9.13 1+5=6 7 8.12,13 6+1+5=12 

15 8,11 2+2=4 6 11 8 

16 13,15 5+4=9 5 10,12,13 1+1+5=7 

17 4.12.13 1+8+5=14 4 5.6,7,17 7+8+12+1=28 

18 8.16 2+9=11 3 5,9 7+2=9 

19 14,16.18 6+9+11=26 2 4,6,8 28+8+6=42 

20 17.18,19 14+11+26=51 1 2,3 42+9=51 

21 20 51 0 1 51 
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each arrow leaving a split. Constructing a table of network paths requires a method to 

generate all paths in a network from the network splits. A path will be defined by its 

sequence of zirrows. 

Tabulation of network paths begins, of course, with the source node. To track splits 

In the network, an initial path needs to be recorded from which splits can occur. An easy 

way to generate this initial path is to take the lowest numbered arrow leaving eve:y node. 

For exEimple, the initied path for the 40-arrow Kleindorfer (1971) network shown in 

Figure 5 consists of Arrows 1, 2, 4, 12, 21, 27, 32, 35, 39, and 40 and includes Nodes 0, 

1, 2, 6, 11, 15, 16, 18, 19, 20, and 21. This is the ilrst path shown in Table 4. 

There are 6 splits from this Initial path. For each split, a new path Is started in Table 

4. Each new path duplicates the partial path that led up to its creating split, then adds 

the arrow numbers of all the splits from the path whose number is Index #1. Index #1 

indicates the path number of the path currently being examined for splits. To account 

for how many paths have been started, Index #2 is maintained to show the path niunber 

of the next path to be started. After a path has been examined, and it has reached the 

sink node. Index #1 is Incremented by one. Then the row indicated by Index #1 starts at 

the ending node of the last recorded arrow to examine it for further splits. The default 

path through the network is always the sequence of arrows with the lowest numbers, 

starting with the last node reached for the beginning of a path. After the initial path Is 

examined Index # 1 is "2" to start examining Path 2, and Index #2 is 8 to show that there 

have been 7 paths stsirted and that Path 8 would be the next one to be started. In Table 

4, the arrow numbers appearing in Italics are the last recorded arrows before the path Is 

reached to complete its examination for splits. The path number that generated the new 

path when It was examined is given in Column 2, entitled "Row Source." The arrow 

numbers after the one In Italics is the sequence of arrows that have the lowest arrow 

number leaving each subsequent node. 

For the network in Figure 5, Node 1 is the first splitting node with two arrows starting 

with it. The lowest numbered arrow is Arrow 2. and the other Is Arrow 3. Arrow 2 has 

been listed In the Initial path. Arrow 3 starts a new path. To record the start of this new 

path, the path leading up to Node 1 Is recorded, and then Arrow 3 is added to the end of 

the sequence. The next node along the initial path is Node 2. It starts 3 arrows, but one 

of those. Arrow 4, is on the original path. The other two, Arrows 5 and 6, start new 

paths. The 2 new path starts should be recorded as Arrow sequences 1-2-5 and 1-2-6. 
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Table 4: Paths of the 40-Arrow Klelndorfer (1971) Network. 

Path Row Ordered Path Arrow Numbers Index 

Number Source 1st 2nd 8:d 4th 5th 6th 7th 8th 9th 10th 11th #1 #2 

1 Step 2 1 2 4 12 21 27 32 35 39 40 2 8 
2 1 1 3 10 16 28 32 35 39 40 3 15 
3 1 1 2 5 19 25 30 37 40 4 17 
4 1 1 2 6 7 12 21 27 32 35 39 40 5 23 
5 1 1 2 4 12 22 28 32 35 39 40 6 27 
6 1 1 2 4 12 21 27 34 39 40 7 27 
7 1 1 2 4 12 21 27 32 38 40 8 27 
8 2 1 3 ii 20 25 30 37 40 9 28 
9 2 1 3 10 17 30 37 40 10 28 
10 2 1 3 10 18 5 30 37 40 11 28 

11 2 1 3 10 16 29 37 40 12 28 
12 2 1 3 10 16 31 36 39 40 13 28 
13 2 1 3 10 16 28 34 39 40 14 28 
14 2 1 3 10 16 28 32 38 40 15 28 
15 3 1 2 5 23 27 32 35 39 40 16 30 
16 3 1 2 5 24 35 39 40 17 31 
17 4 1 2 6 8 13 19 25 30 37 40 18 35 
18 4 1 2 6 9 16 28 32 35 39 40 19 41 
19 4 1 2 6 33 37 40 20 41 
20 4 1 2 6 7 12 22 28 32 35 39 40 21 45 

21 4 1 2 6 7 12 21 27 34 39 40 22 45 
22 4 1 2 6 7 12 21 27 32 38 40 23 45 
23 5 1 2 4 12 22 29 37 40 24 45 
24 5 1 2 4 12 22 31 36 39 40 25 45 
25 5 1 2 4 12 22 28 34 39 40 26 45 
26 5 1 2 4 12 22 28 32 38 40 27 45 
27 8 1 3 11 26 36 39 40 28 45 
28 15 1 2 5 23 27 34 39 40 29 45 
29 15 1 2 5 23 27 32 38 40 30 45 
30 16 1 2 5 24 38 40 31 45 

31 17 1 2 6 8 14 28 32 35 39 40 32 49 
32 17 1 2 6 8 15 30 37 40 33 49 
33 17 1 2 6 8 13 23 27 32 35 39 40 34 51 
34 17 1 2 6 8 13 24 35 39 40 35 52 
35 18 1 2 6 9 17 30 37 40 36 52 
36 18 1 2 6 9 18 25 30 37 40 37 52 
37 18 1 2 6 9 16 29 37 40 38 52 
38 18 1 2 6 9 16 31 36 39 40 39 52 
39 18 1 2 6 9 16 28 34 39 40 40 52 
40 18 1 2 6 9 16 28 32 38 40 41 52 

41 20 1 2 6 7 12 22 29 37 40 42 52 
42 20 1 2 6 7 12 22 31 36 39 40 43 52 
43 20 1 2 6 7 12 22 28 34 39 40 44 52 
44 20 1 2 6 7 12 22 28 32 38 40 45 52 
45 31 1 2 6 8 14 29 37 40 46 52 
46 31 1 2 6 8 14 31 36 39 40 47 52 
47 31 1 2 6 8 14 28 34 39 40 48 52 
48 31 1 2 6 8 14 28 32 38 40 49 52 
49 33 1 2 6 8 13 23 27 34 39 40 50 52 
50 33 1 2 6 8 13 23 27 32 38 40 51 52 

51 34 1 2 6 8 13 24 38 40 52 52 
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The new path recordings should proceed for the splits occurring at Node 11. at Node 16, 

and at Node 18. 

By completely examining the splits off all path examined, all paths In the network are 

generated. After examining a path, if Index #1 (after incrementing) and Index #2 are 

equal, all paths In the network will have been examined and tabulated. 

Critlcallty Definitions 

The next step after counting and identifying paths through a network is to establish 

how each of the path arrows might contribute to the overall network completion time. 

Van Slvke's crlticalitv (1963) is defined for arrows as the probability that an arrow is on a 

critical path. A critical path is a path whose duration equals the duration of the total 

network. If the path's duration is increased, the network's duration is increased by the 

same amount. Because of the nature of project durations, it is not possible for the path's 

duration to be greater than the project's duration. It can only be less than or equal to 

the path's duration. 

Derivations of equations to calculate Van Slyke's Criticality proceed through the 

Increasingly complex networks of series networks, parallel networks, parallel-series 

networks, and complex networks (networks that require conditioning to reduce its 

duration distribution). 

Van Slyke's Criticality In A Series Network 

When there is only one path through a network (see Figure la), it must eilways be 

critical. The duration of the network is determined exclusively by its only path. The 

path's duration is the sum of all of the durations from the series of arrows which 

constitute the path. Since all arrows contribute to the project duration. Van Slyke's 

criticality for arrows must be equal to the probability that the path Is criticeil. The 

probability that the path is critical is 1.00, and the Van Slyke's criticality for the sirrows 

must be 1.00 also. 

The Van Slyke criticadlty for a single path silso applies to a pure series of arrows. A 

pure series of arrows contain nodes (not the begiiming or ending node) that do not have 
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splits or mergers. The series may make an entire path from source node to sink node, or 

the series may be only a portion of a path. 

Van Slyke's Criticality In A Parallel Network 

The 2 paths of the parallel network shown in Figure 2a are assumed to be 

independent. Dodin & Elmaghraby (1985) used this fact to calculate the criticality for 

one of the paths, say Arrow 1. They calculated the criticality for each duration of Arrow 

1 by multiplying the probability of that duration by the cimiulative distribution of Arrow 
2 at the same duration. CritAij = fAiiFA2i • Ross (1980) showed that this equation 

calculates the probability that one distribution variable is greater than or equal to 

another independent variable. The equation explains why longer paths dominate shorter 

paths. For any duration, the Van Slyke criticaliiy of zin arrow (or path) depends on 

whether its duration Is greater than or equal to the durations of the competing arrows (or 
paths), and the probability that Arrow 1 sisstimes a duration i Is f^i,, while the 

probabilities that Arrow 2 does not have a longer duration is Fa2j • Finally, the total Van 

Slyke criticality of Arrow 1 Is the sum of aU of the terms fAiiFA2j • 

CritAi = 2 fAiiF'A2t • 
16A1 

(6) 

For networks with many Independently distributed parallel paths, the Dodin & 

Elmaghraby (1985) calculation can be expanded Into 

CritAi= 2 fAl,FA2,*"FAni-
leAi ' ' (7) 

A better method than using all of the independent distributions in the calculation is to 

only use the distribution of the arrow of Interest and the distribution of the overall 

network. Recall that the product of cumulative distributions was used in the calculation 

of the network duration distribution. By using this fact, the cumulative probabilities do 

not need to be repeatedly multiplied to find each arrow's criticality. By using this fact, 

the Van Slyke arrow criticalities can be calculated from each arrow's cumulative duration 
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distribution and the networlc's cumulative duration distribution, instead of from all the 

cumulative duration distributions from all parallel paths. 

Expanding on this Idea, consider Figure 2, and the arrow numbers assigned in Figure 

2 to designate distributions. The cumulative network duration distribution is 
FaSj = Fa1iFa2i • Here, A2 may be taken to represent a collection of paths parallel to Al. 

Now let Fa2j represent the cumulative probability distribution of A2. evaluated at Arrow 1 
^A3* 

duration 1. Then Fa2, " Substituting this equation Into the Dodin & Elmaghraby 
* Alj 

(1985) equation reduces the number of distributions needed to calculate the crlticallty of 

one path amongst many independent paths to only 2 — the duration distributions of the 

arrow and of the total network: 

C r t t A i -  2 2 
leAi *^Ai, leAi ^ 

This equation will henceforth be called the Parallel Crlticallty Equation. The distribution 

of Arrow 3, the network's duration distribution, may be calculated by any means and the 

equation will stOl be valid so long as the path modeled by Arrow 1 is Independent of (and 

of course parallel with) the rest of the network. 

Van Slyke's Criticalities In A Parallel-Series Network 

Methods to calculate Van Slyke's criticalities in parallel-series networks (see, for 

exaunple. Figure 3) must encompass not only arrows In series, and arrows in parallel, but 

also parallel paths with splits in them. In parallel-series networks, the series (see Figure 

1) and parallel (see Figure 2) configuration of eirrows comprise the entirely of the 

networks. As such, the duration distributions for the networks are calculable by 

repeating the series reduction operations and the parallel reduction operations as 

necessary. Ceilculatlng the Van Slyke criticallly, on the other hand. Is more complicated. 

For the simplest of parallel-series networks (see Figure 6) the Parallel Crlticallty 

Equation is sill that is required to calculate the Van Slyke crlticallty, but for the only 

slightly more complex network shown in Figure 7a, arrows 2 and 3 require an additional 

Van Slyke crlticallty calculation, as discussed below. 
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The simplest of parallel-series networks (see Figure 6) have one set of parallel paths 

and an zirrow In series either within one of the parallel paths (see Figure 6a) or In 

sequence to the parsillel paths (see Figure 6b). For Figure 6a. the Van Slyke crltlcallty for 

Arrow 3 is calculated from the Parallel Crltlcallty Equation. The Van Slyke crltlcallty for 

Arrows 1 and 2 In Figure 6a Is also calculated using the Parallel Crltlcallty Equation, but 

the arrow duration distributions must first be reduced by the series operation. Arrow 1 

and 2's Van Slyke crltlcallty Is the same as that for the path they form since there are no 

splits within the path. 

In Figure 6b, Arrow 1 has a crltlcallty of 1.00 because no matter what combination of 

Arrow 2's and 3's durations determine the duration from Node 1 to Node 2, the duration 

of Arrow 1 will always be added to It to determine the duration of the project. The Van 

Slyke crltlcalltles of Arrows 2 and 3 In Figure 6b are calculated by the Parallel Crltlcallty 

Equation with the arrow's duration distribution and the distribution from the parallel 

reducing operation between Arrows 2 and 3. It is Important to note that the criticedity of 

Arrow 2 may not be calculated by the Parallel Crltlcallty Equation using the distribution 

of the path consisting of Arrow 1 and Arrow 2 against the distribution of the network 

because the path has a split at node 1 (Node 1 would have a merge if the arrow directions 

were reversed). 

The Parallel Crltlcallty Equation assumes an Independent path, and the path 

made-up of Arrows 1 and 2 in Figure 6b is not independent because Arrow 1 is also a 

member of the path made-up of Arrows 1 and 3. The shapes of the distributions from 

Arrow 2 and 3 will remain constant relative to each other. Only the absolute value of 

their durations will change. Crltlcallty depends on the shape and relative distance 

between distributions, not the absolute value of their durations. 

Figure 6: The Simplest of Psirallel-Serles Networks. 
(a) Two activities in series paralled by a third, 

(b) One activity followed in series by two in parallel. 
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To calculate the Van Slyke crlticallty of the arrows In Figure 7. the duration 

distributions of the arrows In the network must first be reduced to the project's duration 

distribution via parallel and series reduction operations. The parallel-series reduction 

of the network in Figure 7 has been Illustrated in Figure 7a, 7b, 7c, and 7d. and the 

distributions Identified In Figure 7 are given in Table 5. The network in Figure 7a Is 

identical In form to the network In Figure 3d. 

The Van Slyke crlticallty of Arrows 1, 4. 5, 6, and 7 are easQy calculated. Arrow 7's 

crlticallty Is 1.0000. Arrows 4 and 6 eire calculated from the Parallel Crlticallty Equation. 

As listed In Table 5, the crlticallty of Arrow 4 is 0.8760, and Arrow 6's crlticallty Is 

0.5680. Arrows 1 and 5 must have the same crlticallty as Arrow 6 because they are the 

series of arrows that make up arrow 6, and there are no splits from Node 1 In Figure 7b. 

The Parallel CrIticEilIty Equation does not work on Arrows 2 and 3 In Figure 7a. It is 

tempting to use the Parallel Crlticallty Equation to calculate the probabilities that Arrow 

2's duration (or Arrow 3's) meets or beats Arrow 3's Duration (Arrow 2's) then multiply 

the probability by Arrow I's Van Slyke crlticallty to calculate Van Slyke crlticallty of 

Arrow 2 for the whole network, but this does not work. The reason Is that the 

distribution at Node 2 is not wholly dependent upon the varying durations of Arrow 1. 

Node 2 also depends upon the varying durations of Arrow 4. The result Is that the 

criticalitles represented by Arrow 2 and 3 depends upon the value of Arrow 1. 

The derivation of an equation to calculate the Van Slyke criticalitles for Arrows 2 and 

3 in Figure 7 will steirt with the 2 arrows and proceed by Including more and more of the 

network untU the whole network Is encompassed. The equation to calculate the Van 

Slyke crlticallty will be developed for Arrow 2, the development being the same for Arrow 

3. 

The duration distributions of Arrows 2 and 3 from Figure 7a are reduced into the 
duration distribution of Arrow 5 in Figure 7b by the parallel operation: Fas, = Fa2iP'a3i • 

If Arrow 5 represented the entire network, the Van Slyke crlticallty of Arrow 2 would be 

CrltA2= S fAzJ— 
leAZ Fa2i 

of Arrow 5, the Van Slyke crlticallty becomes CrltA2 = 2 fA2, 
IEA2 

= 2 fAZjFASi 
16A2 

by the Parallel Crlticallty Equation. Substituting for the duration 

Fa2I^A3I ' 
Fa2j 

which Is the form used by Dodln & Elmaghraby (1985) and Is equation (6) applied to 

Arrow 2 and Arrow 3. Within the network of Figure 7, the Van Slyke crlticallty of Arrow 5 

Is equal to the Van Slyke crlticallty of Arrow 1 and Is equal to the Van Slyke crlticallty of 



www.manaraa.com

32 

Figure 7: Parallel-Series Criticallty Example, 
(a) A parallel-series network, (b) Same network reduced by a parallel reduction, 

(c) After a series reduction, (d) After einother parallel reduction. 

Table 5: Probabilities for Parallel-Series Van Slyke Crlticality Example. 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Criticality 

Arrow I p.d.f. 

Arrow 2 p.d.f. 

Arrow 3 p.d.f. 

Arrow 4 p.d.f. 

0.800 0.200 

0.300 

0.600 

0.700 

0.400 

0.100 0.900 

0.5680 

0.5680 

0.1176 

0.8760 

Arrow 5 p.d.f. 

Arrow 6 p.d.f. 

Arrow 7 p.d.f. 

0.600 0.400 

0.480 

0.048 

0.440 

0.872 

0.080 

0.080 

0.5680 
0.5680 
1.0000 

Arrow 6 c.d.f. 0.480 0.920 1.000 

Arrow 7 c.d.f. 0.048 0.920 1.000 



www.manaraa.com

33 

Arrow 6 because Arrows 1 and 5 form the path of Arrow 6: CritAS = CritAi = CrltA6-

•FA7k' 
Again, from the Parallel Crltlcality Equation, CritAS •" Z fA6 

keA6 P"A6i 
The duration 

distribution of Arrow 6 is defined by the series reduction operation on Arrows 1 and 5. 
Substituting "i+j" for the "k" in the Van Slyke crltlcality equation for Arrow 6. seen as a 

series network composed of Arrows 1 and 5. a new equation is derived: 

CritA6= 2 2 
leAi jeA5 

IaIjIASJ 
Fa7| i+J 

Fa6 
. The Vsin Slyke crltlcality of Arrow 2 is found by 

substituting Its Van Slyke crltlcality for each of Arrow 5's durations for the probability of 

that duration which appears in the Van Slyke crltlcality equation for Arrow 5. 

C r l t A 2  = 2 2  
16AljeA2 

fAlilA2jFA3j 
Fa7 itl 
Fa6 II-

(9) 

By rearranging the equation for the Van Slyke crlticallly of Arrow 2 In Figure 7, it is 

more interpretable. 

CrltA2 • 2 fA2jFA3, 
jeA2 ^ 

2 fAlj 
lEAl ' 

Fa7, 

Fa6 ItJ 

(10) 

For Arrow 2 to be on a critical path, its duration must be at lesist as great as the duration 

from Arrow 3. The first two factors of the first summation states the probability that a 

duration of Arrow 2 occurs and reduces it by the probability that it does not beat Arrow 

3. The Inside summation finds the crltlcality of the rest of the path after the path 

duration is found by adding the duration Arrow 1 to the duration of Arrow 2. In effect, 

this term untangles the series reduction operation. This equation will be referred to as 

the Dependent-Parallel Criticalitv Equation. 

Consider for example the distributions given In Table 5 for the parallel-series network 

In Figure 7. Equation (10), written out explicitly for this example would be: 

Crit2 = f2j,3F3j.3[fi..,(^j j+f2j_^F3j.4 

The numeric calculations are 

Crit2 =0.600. 1.000[.800(^) +.200(^)] +0.400- 1.000[.800(^) +.200(^)] 
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Crit2 = 0.600[.080 + .200] + 0.400[.800 + .200] 
Crit2 = .0.600[0.280] + .0400[1.000]«.0.168+ .0.400" .568. The crlUcality of Arrow 2 

is the same as Arrow I's critlcallty because the durations Arrow 2 Is always at least as 

big as the durations of Arrow 3 as listed In Table 5. Therefore, Arrow 2 is always critical 

so long as Arrow 1 Is critical. The critlcallty calculation for Arrow 3 is more interesting. 

Crlt3 =f3j.2F3j.2[fl,.,(^| ] 

Crita = 0.300 • 0.000[0.800(^) +0.200(^) ] + .700 • .600[.800(^) + .200(^) ] 

Crita - 0.000[0.000 + .020]+.420[.080 + .200] - 0.000[0.020]+ .420[.280] 
Grits = 0.0000 + 0.1176 = 0.1176. 

The first term of Arrow 3's critlcallty is zero because Arrow 3's lowest duration is 

always dominated by Arrow 2. The first term in the square bracket is zero by definition. 

Because the purpose of the calculation is to find the probability that an arrow will be on 

a critical path, and both values in the ratio are cumulative probabilities at the zero level, 

that meeuis that the combination of Arrow 3's and Arrow I's durations have not 

contributed to the path or project duration distribution. Hence the ratio of §^§§ • 0.000 

to be consistent with intentions for the equation. 

If Arrow 2 sind 3 constituted the whole network, their crlticallties would be 1.000 and 

0.420 respectively. Notice that 1.000 multiplied by critlcallty of Arrow 1 yields the 

network value of Arrow 2's critlcallty. If. on the other hand. 0.420 were multiplied by the 

.568 of Arrow 1, the result is not equal to Arrow I's network critlcallty 
(0.420 • 0.568 = 0.23856»«. 1176 - Crlta). This gives credence to the Dependent-Psirallel 

Critlcallty Equation for parallel-series networks. The results of the equation are also 

verifiable by taking all combinations of the arrows in the sample. Since all 4 EUTOWS in 

Figure 7 only have one decimal place for the probabilities assigned to them in Table 5, 

the probabilities for the combinations of the 4 arrows must have 4 decimals. The before 

mentioned equation yields probabilities with only 4 decimal places, but the pure parallel 

critlcallty equation multiplied by the path's critlcallty does not. 

The parallel-series Van Slyke critlcallty equations, the Parallel Critlcallty Equation 

and the Dependent-Parallel Critlcallty Equation, are applicable in more places than 

would seem obvious. Each arrow depicted in Figure 7a may represent a number of 

arrows or subnetworks. If a network can be reduced into the form of Figure 7a (see, for 

example, the reduction of Figure 3a Into Figure 3d.) the critlcallty of Arrow 2 (or 3) is 
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calculated from the pareillel-series crlticallty equation. Arrow 3 may have originated as 

another series-parallel network, a Wheatstone network, or some other more complex 

network. Criticality analysis of Arrow 2 requires only the distribution of Arrow 3 which 

csm be a reduced distribution of a much larger network. Arrow 1 can represent the 

distribution of £ill arrows that come before and alter the parallel Arrows 2 and 3. It too 

can be a reduced set of many arrows. The only requirement for Arrow 1 is for its 

distribution be known and that it constitutes the rest of the path with Arrows 2 and 3 to 

run peirallel with Arrow 4. The distributions of Arrows 6 and 7 must also be known. They 

can be found by parallel and series reduction. Arrow 4's distribution is not required so 

long as the network distribution at node 2 is known. The equation calculates Arrow 4's 

distribution Impact. The Dependent-Parallel Criticality Equation reduces into the 

ParaUel Criticality Equation when the distributions of Arrow 1 and Arrow 4 in Figure 7 

are both set to durations of zero with probabilities of 1.000. 

The Dependent-Parallel Criticality Equation for the calculation of Van Slyke 

critlcalitles in parsillel-series networks is the perfect complement to duration distribution 

reduction techniques introduced by Martin (1965) and used by Etodln (1985a, 1985b, & 

1985c), Dodln & Elmaghraby (1985), and Biu-t & Garman (1971). There has not existed 

before now a procedure that could handle criticality calculations of networks with many 

arrows in parallel and series. The equation not only covers arrows in paraDel and series 

but also explains crlticEilltles when there is a mixture of the two. 

Van Slyke's Criticality In Complex Networks 

Like the duration distribution reduction operations. Van Slyke criticality calculations 

for networks with precedent structures more complex than arrows in parallel and series 

require conditioning. By conditioning on the arrows that precede splits in the network, 

the remaining arrows of the network are reduced Into a merging parallel-series tree. A 

merging parallel-series tree Is defined as a network that starts with independent arrows, 

ends In a single node, and is completely reducible using only the Parallel and Series 

Reduction Operations. The network is thus reduced into two categories — the group of 

arrows whose durations are fixed by conditioning and the group of arrows that form a 

merging peirallel-serles tree. The arrows whose durations su-e fixed by conditioning will 
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be called Conditioning Arrows, and the arrows formed into a merging peirallel-serles tree 

will also be referred to as Conditioned Arrows. 

For example, refer to the conditioned Wheatstone network depicted in Figure 4c. 

Splits in the network of Figure 8a (identical with Figure 4a) are preceded by only one 

arrow, Arrow 1. Arrow 1 is designated as a conditioning arrow and shown in the 

"Conditioning Arrows" category in Figure 8b. By Ibdng the duration of Arrow 1 before 

adding it to the next arrows, the accumulated distributions of Arrow 3 and Arrow 4 are 

independent; whereas before conditioning they were not. Arrows 3 and 4 are shown in 

the "Conditioned Arrows" category of Figure 8b. Arrow 2 was already Independent of 

Arrows 3 and 4. Adding Arrow I's flxed duration to the duration distributions of Arrow 2 

and Arrow 4 does not change the shape of their duration distributions. 

(a) 

Conditioning Arrows Conditioned Arrows 

4 <3; 

®—'-(5—3-®—5-® 

(b) 
Figure 8: The Wheatstone Divided into Conditioning and Conditioned Arrows, 

(a) The Wheatstone Configured Network. 
(b) The Conditioning Arrows & the Merging Parallel-Series Tree. 
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Once the network of Figure 8 Is conditioned by Arrow 1. the Van Slyke crlticalities of 

Arrow 4 and Arrow 5 are easily calculated by the Parallel Cntlcallty Equation. Arrows 2 

and 3 require the Dependent Parallel Crltlcality Equation because they merge at node 2 

which is not the sink node. Each Van Slyke crltlcality calculation for conditioned arrows 

is weighted by the probability of the conditioning arrow's duration. To find the total Van 

Slyke crlticalities of Arrows 2. 3, 4, and 5, the weighted Van Slyke crlticalities are 

summed over £ill conditioning duration combinations by the Law of Total Probability. 

The Van Slyke criticsillty of Arrow 1 is calculated differently. For the Wheatstone 

network in Figure 8, there are 2 approaches to calculate the Van Slyke crltlcality. One 
method examines when Arrow 1 is not on a critical path (1 -CritAi), and the other 

method calculates the Van Slyke crltlcality from probabilities in the merging 

parallel-series tree. 

The Wheatstone, as shown in Figure 4b, has 3 paths. Arrow 1 starts 2 out of the 3 

paths. If either of the 2 paths determine the network duration. Arrow 1 will be critical. If 

on the other hand, the third path, the one without Arrow I on It, has a larger duration 

than the paths with Arrow 1. then the Van Slyke crltlcality of Arrow 1 is 0.00. The Van 

Slyke crltlcality of the third path, the one with Arrows 2 and 5. Is the same as the 

crltlcality of Arrow 2 since that Is Arrow 2's only path. The Van Slyke critlcedlty of the 

path with Arrow 2 includes probabilities that the path ties with one or more paths. By 

tedcing the instances when the third path is longer than the other 2, a probability without 

ties Is calculated. The probability that Path 3 In Figure 4b Is the longest of the 3 paths Is 

the probability that Arrow 2's duration is longer than the sum of Arrow I's duration and 

Arrow 3's duration and that the sum of durations from Arrows 2 and 5 is longer than the 

sum of durations from Arrows 1 and 4. The Van Slyke crltlcality of Arrow 1 using this 

method Is 

where "z" In the subscripts designate a distribution calculated through the end of the 

designated Arrow. The designation ''A3z" designates the distribution resulting from 

adding the conditioned duration of Arrow 1 to the durations In Arrow 3's distribution, 

and "A4z" designates the distribution resulting from adding the conditioned duration of 

(11) 
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Arrow 1 to the durations In Arrow 4's distribution. Because the Wheatstone network 

only has 1 path on which Conditioning Arrow 1 is not a member, the calculation 

equation is easily expressed. For more complex networks, the equation will only be more 

complicated. Remember, that the Wheatstone network is the simplest of networks that 

require conditioning. This complementary method to calculate the Van Slyke criticallty 

can become untenable as the numbers of alternative paths to the one the conditioning 

arrows are on become numerous. 

The other method observes that the influence of Arrow 1 on the project duration is 

manifested through Arrows 3 and 4. It should, therefore, be possible to calculate the 

Van Slyke critlcality of Arrow 1 from the Van Slyke criticallties of Arrows 3 and 4. The 

Van Slyke criticallty of Arrow 1 CEUI not be the sum of the Van Slyke criticallties of 

Arrows 3 and 4 because sometimes both are on a critical path simultaneously. The 

probability of both Arrows 3 and 4 simultaneously being on a critical path is foimd by 

the intersection of their Van Slyke criticallties. CrltlCEklitles are probabilities £ifter all. If 

the Intersection of the criticallties is found, then the Van Slyke criticallty for Arrow 1 

would be 

CrltAi = CrltAs +CritA4 -CritA3nA4 (12) 

However, the Van Slyke criticallties of Arrows 3 and 4 are not independent because the 

duration distribution of the network is used in both calculations. Therefore, additional 

Information Is needed to calculate the Van Slyke critlcality Intersection of Arrows 3 and 

4. 

The Van Slyke criticallty Intersection of Arrows 3 and 4 occurs when the durations of 

their paths are tied with each other sind is at least as long as the third path. At the sink 

node, there Is 1 merger: Arrows 4 and 5 end at the sink node. Arrow 1 precedes Arrows 

3 and 4. Arrow 3 precedes Arrow 5. Take the distributions of durations at the end of 

Arrows 4 and 5 just before they are parallel reduced to calculate the network duration 

distribution. The probability of the accumulated distributions of Arrows 4 and 5 tying as 

they enter the sink node. Node 3 In Figure 8, is the summation of the probability 

products that each will take on the same of all durations: 
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00 

Pr(A4z « A5z) •• 2 • (13) 

The distribution of A5z, however, represents the reduced distributions of Arrows 2, 3, 

and 5. Arrow 2's contribution to the network duration should not be considered when 

calculating the Van Slyke critically of Arrow 1. The path crlticalltles based upon any 

duration of Arrow 3 should be reduced by the probability that Arrow 2 exceeds the 

duration. Arrow 5's accumulated duration distribution is the series reduction of Arrow 

5's duration distribution with the parallel-reduced duration distribution from Arrow 3's 

accumulated distribution and Arrow 2's duration distribution. 

To find the probability that the 2 paths stsirting with Arrow 1 are both critical, 2 events 

must occur. The durations of the accumulated durations of Arrow 5 and Arrow 4 must 

be equal, and Arrow 2 must not be longer than the Accumulated duration of Arrow 3. 

Combining all of these factors into an equation, 

For the distributions given in Table 6, the following calculations wUl be performed 

with Arrow 1 of Figure 8 set at its conditioning value of 1 duration. Substitutions into 

the equation derived above for simultaneous Van Slyke crlticalltles of conditioned arrows, 
Pr(CritA3 n CritA4) = • l[(.8)(.6)(1.0)+(.2)(.0)(.0)] + .9[(.8)(.4)(I.0) + (.2)(.6)(.3)] = .3348. 

When Arrow 1 is set at duration 1, the Van Slyke criticallty for Arrow 3 is .4504, and the 

Van Slyke criticallty for Arrow 4 is 0.7668. The criticallty of Arrow 1 when it is set to 1 is 
CrltAi J = .4504 + .7668 - .3348 - .8824. The probability of Arrow 1 taking on the duration 

1. in the example of Table 6, is 0.5. To And the overall Van Slyke criticallty of Arrow 1 

for the entire network, the 0.8824 is multiplied by the weight of 0.5 and added to the 

weighted Van Slyke crlticalltles of the other durations of Arrow 1. Each conditioning 

(14) 
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Table 6; Wheatstone Example Probabilities to Calculate Van Slyke Criticalities. 

Duration Days 

0 1 2 3 4 5 6 Critlcality 

Arrow 1 p.d.f. O.l 0.5 0.4 0.86616 

Arrow 2 p.d.f. 0.3 0.7 0.52224 

Arrow 3 p.d.f. 0.6 0.4 0.46440 

Arrow 4 p.d.f. 0.1 0.9 0.75540 

Arrow 5 p.d.f. 0.8 0.2 0.76240 

Project p.d.f. 0.0312 0.4920 0.4448 0.0320 

duration of Arrow 1 follows the same calculations. The numeric results for all Arrow 1 

durations and their Van Slyke criticalities are given In Table 7. 

Conceptually, conditioning can reduce any network Into either a paraUel-series 

network or into a network where the conditioning encompasses every combination of 

diu'ations from every arrow. A method to condition a complex network to form a 

parallel-series merging tree is to condition upon all of the sirrows that precede splits In 

the network. This could be done from either a forward pass or a backward paths. 

Depending upon the network, it is possible that almost all arrows wiU have to be 

conditioned. If that happens, complete enumeration of all combinations is almost 

duplicated but in a more confusing manner. The nxmiber of combinations in the 

Table 7: Wheatstone Vein Slyke Critlcality Calculations for Arrow 1. 

Arrow 1 Criticsilltles Duration 

Duration Probability Arrow 3 Arrow 4 3&4 3+4-(3&4) Critlcality 

0 0.1 0.1200 0.2160 0.0864 0.2496 0.02496 

1 0.5 0.4504 0.7668 0.3348 0.8824 0.44120 

2 0.4 0.5680 0.8760 0.4440 1.0000 0.40000 

Total Arrow 1 Van Slyke Critlcality; 0.86616 
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conditions can also get prohibitively large. The next chapter Introduces an algorithm to 

minimize the prohibitive growth of duration combinations when there are many 

conditioning arrows. 
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A NETWORK ANALYSIS ALGORITHM 

The algorithm presented in this chapter h£is the objectives of generating the duration 

distribution of a network and calculating the Van Slyke (1963) criticalities of the arrows 

in the network. Secondary goals are to perform the analysis efTlciently and to identify 

features of the network that cause longer network durations. 

The technical details on how to c£tlculate the duration distributions and the Van 

Slyke criticalities in networks were discussed in previous chapters. Theoretically, those 

techniques are applicable to any network. Practically, however, calculations for large 

networks may become prohibitive. Computations may take a prohibitively long time to 

complete because of the large number of arrows in actual projects, of combinations of 

durations to condition the network, and of the number of stmimations required for series 

distribution reduction operations and for Vsm Slyke critlc£dlty calculations, even with 

modern computers. Hagstrom (1988] claims "that computing even a single point of the 

cumulative distribution function ... is NP-Hard" (p. 139). She was referring to the project 

duration distribution. 

The algorithm must manage to limit the number of calculations to be efficient. The 

algorithm must also control the number of calculations without giving up much accuracy 

in order to be useful. To accomplish these seemin^y contradictoiy goals, the algorithm 

will identify the important parts of the network before doing very many calculations. 

Dr. Juran (1951) observed that In many, many cases, "a small percentage of the ... 

characteristics always contributes a high percentage" (p. 39) of effects. That although 

there may be many characteristics of a system, their influences are "never uniformly 

distributed over the ... characteristics. Rather, the losses are always maldistributed" (p. 

39). Identifying the significant few network characteristics from amongst the trivial many 

is called a "Pareto Analysis" (Aubrey & Gryna, 1991, p. 12). The trivial many 

charactei-istlcs, while contributing something, will probably not contribute much. By 

focusing on the significant few for calculations the efficiency of the algorithm would be 

enhemced without losing much accuracy. 

A basic characteristic of scheduling networks is that maximum path durations 

leading to event nodes determine the duration from the project beginning to the event's 

completion. This is because of the precedent relationships. As Miller (1963) puts it "no 

activity may start until Its predecessor event is completed: In turn, no event may be 
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considered complete until all activities leading into It have been completed. This is the 

key topological ground rule" (p. 34). In an analysis of the network starting with the 

source node, "all activities are asstimed to start as soon as possible, that is, as soon as 

all of their predecessor activities are completed" (Moder, Phillips, & Davis, 1983, p. 74). 

Because event completions must wait for the longest duration of paths that lead up to 

the event, paths with shorter durations have no effect on when the event Is completed. 

By Identifying the paths with the longest duration, the significant few chEiracterlstlcs 

of the network are also found. If Juran's teachings (1951) hold true for the scheduling 

network case, these significant few paths should be able to explain most of the network 

duration distributions and the Van Slyke criticalitles. By discarding the paths that do 

not very often Influence completion durations, the trivial many are ignored, thus 

reducing the number of computations necesseiry for analysis. An algorithm developed on 

this basis could generate probabilities without complete enumeration and without 

extensive simulations. 

Analysis of the network may be simplified by analyzing Just the significant few paths 

and their Interactions. The interactions amongst the significant few paths could be 

modeled by making a skeletal network from the arrows within the few paths. With few 

paths chosen, the skeletal network duration distributions and Veui Slyke criticalitles can 

be cEilculated exactly by the methods described in previous chapters. The number of 

calculations necessary to perform an exact analysis would be drastically reduced. In 

effect, the algorithm would pick from the network a sample biased by the duration of 

paths, build the paths into a skeletal network, and then completely analyze the smaller 

network. 

Before developing the detaUs of this algorithm, the algorithm assumptions wUl be 

stated. In the project duration distribution section, a procedure is presented to select the 

significant few paths of a network to best represent the completion duration distribution. 

Analysis of the selected paths Include forming a new network and calculation duration 

probabilities. The Crltlcallly section will discuss how to recognize when the different 

exact calculation methods for Van Slyke criticalitles, presented In the previous chapter, 

are applicable. Finally, the last section of this chapter wfll summarize the algorithm. 

Emphasis in the summary will be on the steps and rules needed to apply the algorithm to 

any network. In the next chapter, the algorithm will be tested on a moderately large, 

complex, published network. 
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Algorithm Assumptions 

The algorithm assumes a scheduling network that models activities as arrows and 

events as nodes. The network is assumed to have one source node and one sink node. 

All arrows in the network have a steirting node, an ending node, and a finite, discrete 

distribution of possible durations, and an assigned Index number. The duration 

distributions for all arrows are assvuned to be independent of all other arrow duration 

distributions. All nodes in the network are also eissumed to have index numbers, and 

they £ire assumed to have recorded the number of arrows that start sind end at the node. 

The precedence relationships within the network are deflned by EUTOWS indicating the 

node index numbers of its starting and ending nodes. Before an arrow can start its 

duration, its starting node must be realized. A node is reeJized if all of the arrows that 

end at that node have completed their durations. 

The precedence relationships within the network are assumed to have no cycles. 

That is, once a path reaches a node, it cannot reach the node again. In addition, there 

are no decision points in the network. All arrows must be performed once and only once, 

and are assumed to start as soon as they are eligible to do so. 

It is further assumed that, for ansilysis purposes, it makes no difference whether the 

network is analyzed forward in time from the source node or backwards in time from the 

sink node. Time is a strictly nonnegatlve entity. The analysis will focus on the 

distributions eind precedents of the arrows in the network not what has to physically 

happen in the project to make the precedents necessary. Since the algorithm will 

generate probabilities associated with lengths of time (duration distributions and the 

probability of the longest durations), this assumption will result in no loss in generality. 

Whether one adds up a list of numbers In ascending order or In descending order makes 

no difference to the final sum. 

Estimating The Project Duration Distribution 

CPM and PERT find critical paths in a network from fixed arrow durations. CPM 

Inputs call for fixed durations. PERT accepts duration distributions for arrows as input, 

but calculates the critical paths using the means from the arrow duration distributions, 

and only uses the variances to break ties. Both CPM and PERT examine the Influence of 

the critical path on other parts of the network once the critical path is found. 
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The durations of paths are directly comparable to project durations. Critical paths 

are easily seen to be critical if their durations match the duration of the project. The 

path duration is the sum of its arrow durations. An arrow is critical only if it is on a 

critical path. Arrows are often on more than one path. 

Paths have distributions of durations when the arrow durations it sums come from 

distributions. Because the paths have distributions for their durations, their durations 

are uncertain. When sill paths in a network have duration distributions, the duration of 

the network is uncertain. It has long been recognized that the single critical path 

through PERT networks underestimate the network's duration (For example, Malcolm, 

Rosenbloom, Clark, & Fazar, 1959, and MacCrimmon & Ryavec, 1964). Paths other than 

the one designated as critical by PERT increase the probability of achieving longer 

diu-ations. When PERT's critical path assumes a shorter duration from its distribution, 

the project duration might not be shorter because a competing path may have assumed a 

larger duration from its distribution. The path with the longest diiration determines the 

project duration. Because of the path duration distributions and the uncertainty as to 

which paths will be critical for any given actual project, the network duration has a 

distribution. 

Two things are clear about the paths in a network with a distribution of durations. 

First, the longest paths dominate the distribution. The author likes to compare this to 

basketball players. The tall people tend to get the reboimds. Tall people don't always get 

the rebounds, but they get them more often. It is the same way with network durations. 

Paths with durations longer than many of the competing paths will determine the project 

dvu-atlon more often. The second thing is that as well as dominating paths there are 

paths that are dominated. Dominated paths have maximums that are shorter than some 

other path's minimum. The algorithm finds the dominating paths. 

Path Selection The network minimum and maximum durations are quantified with 

the first 2 paths selected. A path determining the minlmimi network duration is 

identified by taking the path with the longest duration when all network arrows are 

assigned their minimum durations. A path determining the maximum network duration 

is Identifled by taking the path with the longest duration when all network arrows are 

assigned their maximum durations. The Path Identification method Initially defines all 

paths as discussed In the previous chapter. Path durations are the sum of durations 
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from the path's arrows. This is true whether the diu-ations are assigned or whether they 

are sampled from the arrow duration distributions. The longest paths are foimd by 

sorting, in descending order, the path durations generated by summing arrow durations. 

The 2 paths dominate portions of other paths but in different manners. 

The longest path with minimum arrow durations determines the lower bound of the 

network distribution. Other paths are dominated when their durations are less than the 

network's minimum duration. If the maximum durations of other paths are greater than 

the network's minimum duration, the other paths are totally dominated, and can be 

disregarded altogether. Vein Slyke (1963] recommended this technique for eliminating 

paths that could never be critical. The network's minimum duration is this path's 

minimum duration. The path's duration can only Increase becoming more dominant as 

it does so. This is an excellent example of the significant few paths have large impacts 

— the path not only dominates other paths at its minimum duration, but it also 

dominates other paths throughout its entire duration distribution. 

The longest path with maximum arrow durations determines the upper limit of the 

network distribution. This path is £klways critical when it is at its maximum duration. 

No other paths eire capable of being longer. Unless there is a tie for the longest possible 

path, the path has a range of durations which will guarantee that it will be critical. The 

range is the difference between the path's maximum duration and the next longest 

duration from another path. The probability of being a critical path is diminished when 

its duration drops below the secondary path's maximtun duration. The probability that 

the network will reach any duration in this range is exactly the probability that the path 

will achieve a duration in the range from its distribution. In other words, the right tail of 

the path's duration distribution is the right tall of the network's duration distribution 

past the secondEuy path's maximum duration. The path defines the upper limit of the 

network's duration distribution. 

It is possible for there to be ties for the longest path. Paths are picked from ties by 

maximizing the probabUlties of having large durations. Ties for the longest path with 

maximum duration arrows are broken by selecting the path with the longest duration 

when the arrows are set at their mlnlmums. Ties for the longest path with minimum 

duration arrows are broken by selecting the path with the longest duration when the 

arrows are set at their maximimis. If there are still ties, pick the path with the lowest 
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number. (The number is the order In which the Path Identification procedure generates 

paths.) 

In practice, the significant few paths Involve the right tail of the network duration 

distribution. Project schedulers set project completion time targets to include most of the 

project duration distribution. The schedule target dates "are usually in the high 90s 

percentile" (Elma^raby. 1977, p. 30) of the project duration distribution. The network 

scheduled times of completion "can be used as vehicles for producing useful information 

about project... planned costs" (Moder, PhUIlps, & Davis, 1983, p. 135). The costs are 

Important in making budgets for the project. "The budgeting process enables the firm to 

set forth specifically how it intends to realize its objectives and to coordinate the various 

activities that it will be required to carry out" (Granof, 1983, p. 563). Indeed, incentives 

to meet schedule are built into some contracts (Miller, 1963). 

To select the paths that dominate the right tsiil of the network duration distribution, 

the paths are sorted in descending order after all arrows have been assigned their 

maximum duration. The first path from the sort has already been picked; it is the one 

which determines the far right-tall of the network duration distribution. The second 

path competes for criticality when the first path's duration drops below its guaranteed 

crltlcallty range. Between the first and second paths, the probabilities of the durations 

above the third path's maximum duration are exactly calculable by the methods defined 

in the Calculation of Network Distributions chapter. Adding additional paths increases 

the range of network distribution durations which have exact calculated probabUities. 

The paths with the longest maximum durations influence more than the network 

duration distribution's right teill. Lesser durations fi-om these same paths still dominate; 

so long as they are greater the network's minimimi duration. 

Paths with diminishing maximum durations could be added xuitil a path maximum 

duration equeds the network minlmvmi duration or until calculation times became 

vmbearable. Theoretically, these paths, together with the exact network distribution 

methods already discussed, would yield an exact distribution for the network durations. 

Practically, computing times for networks with many paths will become imbearable. In 

addition, each new path's contribution to the network distribution becomes less and less. 

The last ones added truly are the trivial many. 

The Skeletal Network The number of paths to include in a skeletal network can be 

somewhat flexible. Paths could be added to a skeletal network until either computing 
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resources or human patience reaches a limit, or a maximum nimiber of paths could be 

set before hand. Anklesaria & Drezner (1986) "predicted very accurately" (p. 813) the 

project duration distributions by using 5 paths in their PERT analysis using 

multivariable normal distributions. The algorithm will select 6 paths. The 6 paths 

include the path with the longest duration when all arrows are set to their minimimi 

durations, and the 5 paths with the longest durations when the arrows are set to their 

maximums. 

A skeletal network is built from the arrows of the 6 paths. Arrows from the 6 paths 

are given additional new numbers, but nodes from the original network are not. Arrow 

numbers are cross referenced. The nodes are reproduced for the new network. The new 

network will have one source node, one sink node, no cycling path of arrows. The new 

skeletal network may have more than the original 6 paths. When paths intersect, they 

create places where paths are partitioned, and the partitions can form combinations of 

paths not originally included. This is another example of how the significant few paths 

influence the trivial many. The included paths are included in subsequent analysis. 

The skelet£d network is designed to minimize the number of cadculations needed to 

get accurate network probabilities. By identifying and reducing arrows in series, the 

number of necessary calculations are decreased further. Arrows in series are identified 

by nodes which end exactly 1 arrow and starts exactly 1 arrow. The arrows on either 

side of the node are reduced into an equivalently distributed arrow by the series 

reduction operation, and the node is eliminated from the skeletal network. The new 

arrow has a different number, but references to the original arrows are maintained. 

(Arrows in parallel £irrangements are needed for Van Slyke criticality calculations.) 

Network Duration Distribution Calculations The algorithm calculates network 

duration probabilities by the Law of Total Probability (Taylor & Karlin, 1984). Pritsker 

(1995) describes the law as "the probabilify of the outcome B is equal to the sum of the 

conditional probabilities associated with B given the occurrence of mutually exclusive 

and exhaustive outcomes A, weighted by the probability of A,, that is, 
P(B) = 2 P(BIAI)P(AI)" (p. 26). The combinations of arrow durations Eire mutually 

exclusive and exhaustive. The network duration distribution Is calculated by the 

algorithm conditioning on the durations of a set of arrows. The probability of any 

duration in the network duration distribution is calculated by the Law of Total 
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Probability. For a given duration, the total network probabUlty Is the sum of the 

products of the conditioned network probabilities times the probability of the 

combination of arrow durations used for conditioning. 

Conditioning the skeletal network is the flrst step In calculating network distribution 

probabilities. Conditioning reduces the skeletal network complexity to the complexity of 

a parallel-series network. Thus, conditioning is not required for parallel-series skeletal 

networks. Exact probabUlty calculations are available for networks with arrows in 

parallel-series arrangements. 

A parallel-series network exists when the arrow duration distributions eire reducible 

to the network's duration distribution by using only the parallel reduction and the series 

reduction operations. A parallel reduction operation Is indicated if 2 or more arrows 

have the sEime starting and the same ending nodes. A series reduction operation is 

indicated if a node starts 1 arrow and ends 1 EUTOW. The parallel-series check does not 

have to actually perform the duration distribution reduction operations. Only the 

reduction in arrow numbers and the elimination of nodes are tracked in the check for a 

parallel-series network. The algorithm assumes that the skeletal network of arrows is 

not InltiEtlly in a parallel-series arrangement. 

The sdgorlthm conditions the skeletal network by conditioning arrows which come 

before splitting nodes or sifter merging nodes. A splitting node stsirts 2 or more arrows, 

and a merging node ends 2 or more arrows. The conditioning arrows can either be 

designated starting at the sovirce node and working forw£trds or can be designated 

starting with the sink node and working backwards through the network. Expending 

upon the skeletal network, one set of designated conditioning arrows will be more 

eflicient than the other. Network probability calculations must be repeated for every 

combination of durations from the conditioning arrows. The number of combinations for 

each set of conditioning arrows are calculated by taking the product of the number of 

each conditioning arrow's duration. The minimum number of combinations determine 

which set of conditioning arrows are used. If the duration combinations from the set of 

conditioning arrows coming before splits are less than or equal to the duration 

combinations coming after mergers, the set of conditioning arrows coming from the 

source node are selected. 

The arrows in the selected set of conditioning arrows are designated Conditioning 

Arrows. All other arrows are designated Conditioned Arrows. In addition. Conditioned 
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Arrows which share nodes with Conditioning Arrows are also designated as Starting 

Arrows. The nodes common to Stsirting Arrows and Conditioning Arrows will be before 

the Starting Arrows if the Conditioning Arrows start from the source node and will come 

after the Starting Arrows If the Conditioning Arrows end at the sink node. The 

Conditional Probability is defined as the probability of a combination of Conditioning 

Arrow durations. The conditional probability is calculated by multiplying the 

probabilities of the Conditioning Arrow durations in the combination. 

The durations from the Conditioning Arrows are translated into the Starting Arrow 

duration distributions. A combination of Conditioning Arrow durations fixes the 

conditional durations of the splitting nodes (or merging nodes if the Conditioning Arrows 

start at the sink node). The conditional split (or merge) node durations are translated 

into the Starting Arrows' duration distributions. The probabilities in the Starting Arrow 

duration distribution do not change, only what duration the probabilities represent. The 

durations of the Starting Arrow distributions are increeised by the conditional splitting 

node duration. Instead of trying to enter the Conditioning Arrow durations into 

conditional calculations, the Conditioning Arrow durations are translated into Starting 

Arrows' duration distributions before conditional calculations are performed. The 

translated distributions of the Starting Arrows are still Independent. If constants are 

added to 2 Independent variables, they are still Independent afterwards (Freund, 1992). 

The conditional network duration distributions are calculated with peirallel 

distribution reduction operations and series distribution reduction operations once the 

durations of the Conditioning Arrows are tremslated into the Starting Arrow duration 

distributions. The conditional network duration probabOlties are multiplied by the 

Condltlon8il Probability and accumulated into a total probability for each duration. The 

probability of each network duration Is the accumulated total probability after all 

combinations of Conditioning Arrow durations have been used for conditioning. 

Combinations of Conditioning Arrow durations are sequentially Identified. The 

Conditioning Arrow numbers are listed In ascending order. All Conditioning Arrows are 

set to their minimum durations, the first conditional probability Is csilculated, and the 

network conditional csdculations are performed. The Conditioning Arrow durations are 

incremented in the order they appear on the list. The first Conditioning Arrow always 

gets Incremented if Its duration Is less than its maximum. If the first Conditioning 

Arrows on the list are already set to their maximum durations, the first Conditioning 
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Arrow not at its maximum is incremented, and the Conditioning Arrows higher on the list 

are reset to their minimum durations. All combinations have Identified when all arrows 

on the list are set at the maximum durations. The conditional probability and network 

conditlonsil calculations are performed for all combinations. 

Van Slyke Arrow Criticality Calculations 

The algorithm calculates Van Slyke critlcalities for the arrows in the skeletal network. 

Arrows which are not part of the skeletal network are assumed to be unimportant. 

"Critical path methods facUitate ... focusing management attention on the 10 to 20 per 

cent of the project activities that are most constraining on the schedule" (Moder, PhUlips. 

& Davis, 1983, p. 19). The longest paths selected for the skeletal network will necessarily 

identify the most critical arrows. Arrows which sire not part of the 6 paths selected for 

the skeletal network must belong to the trivial many. The excluded arrows might 

occasionally be on a criticsil path, but only If the project duration is below the 95th 

percentile where schedules are set (Elmaghraby, 1977). 

The key to calculating Van Slyke critlcalities is the skeletal network topology. The 

topology Is divided by designating Conditioned Arrows and Conditioning Arrows as 

described in the previous section. Conditioning the skeletal network allows the 

Dependent Parallel Criticality Equation to cedculate Van Slyke critlcalities directly for the 

Conditioned Arrows and Indirectly for the Conditioning Arrows. Identifying the Parallel 

Merging Tree topology formed by the Conditioned Arrows is crucisil to correctly 

calculating the Van Slyke critlcalities. 

Assimie, without loss of generality, that the set of Conditioned Arrows come after the 

Splitting Nodes (nodes which start more than 1 arrow), and that all of the arrows which 

precede the Splitting Nodes form the set of Conditioning Arrows. The Merging Parallel 

Tree consists of the Conditioned Arrows. The Starting Arrows are the branches of the 

Merging Parallel tree because they start with Splitting Nodes. The sink node is the base 

of the Merging Parallel tree. All nodes between the Steirting Arrows and the sink node arc 

merging nodes. The initial series distribution reduction operations performed on the 

skeletal network would have precluded any nodes with 1 path, and all of the Splitting 

Nodes occur before the Starting Arrows. 
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Van Slvke Crlticalltv Calculations for Conditioned Arrows The Dependent Parallel 

Crltlcallty Equation calculates the Van Slyke crlticalitles of the Conditioned Arrows after 

they are conditioned by the Conditioning Arrows. The algorithm calculates Van Slyke 

crlticalitles for Conditioned Arrows via an alternate form of the Dependent Par£illel 

Crltlcallty Equation. Referring to Figure 7, the Dependent Parallel Crltlcallty Equation 

(Equation 10] is transformed into the following: 

The FA4I^J IS the probability that Arrow 2's path of Figure 7 beats or ties the parallel 

path of Arrow 4. The new form of the Dependent Parallel Criticality Equation must have 

a cumulative distribution for every path which merges with nodes that lay between Arrow 

2 and the sink node. While potentially increasing calculations, the sparsity of the 

skeletal network guarantees manageability. 

Most distributions input into the revised Dependent Parallel Criticality Equation 

(Equation 16) are accumulated arrow duration distributions. An accumulated arrow 

duration distribution is the duration distribution to the end of an arrow, including all 

skeletal paths which include the arrow. In the algorithm, the acciunulated arrow 

duration distributions will be calculated after the durations of the Conditioning Arrows 

have been fixed. The accumulated arrow duration distribution of a Starting Arrow is the 

arrow's duration distribution translated by the conditional duration of its starting node, 

a Splitting Node. Accumulated duration distributions of arrows which come after the 

Starting Arrows are calculated by parallel reducing all accumulated arrow durations 

which enter the present arrow's starting node and series reducing the resultant duration 

distribution with the eirrow's duration distribution. These operations are already 

performed to calculate the skeletal network duration distribution. 

Configuring the Dependent Parallel Criticality Equation (Equation 16) for a 

Conditioned Arrow is dependent upon how many mergers and nodes there are from the 

arrow to the last merging node. A nested summation Is required for eveiy node. 

including the arrow's ending node, between the Conditioned Arrow and the last merging 

node. For the summation Indicated by each subsequent node, the number of factors 

equals the number of sirrows starting or ending at the node (except arrows starting at the 

2 ffA2jFA3j( 2 
jeA2 [ J \ieA 

CrltA2 (16) 
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last merging node are ignored). Each summation is over the duration range of the arrow 

whose VEUI Slyke criticality Is being calculated or is on the path of the arrow whose Van 

Slyke criticality is being calculated. The first factor in each nodal summation is a 

duration distribution probability of the calculation arrow or an arrow on its path. If the 

arrow whose V£in Slyke criticality is being calculated merges at the node, the 

probabilities sire from its acciimulated arrow duration distribution (p.d.f.): otherwise, the 

probabilities are from subsequent path arrow's duration distribution (p.d.f.). Other 

factors at each nodal summation Eire the cumulative probabilities (c.d.f.) from the 

accumulated duration distributions from the arrows merging at the node. Finally, the 

last factor is a summation from the next node, if any. 

Van Slvke Criticality Calculations for Conditioning Arrows Fixing the durations of 

the Conditioning Arrows prevents direct csilculation of the Vsin Slyke crlticsdities via the 

Dependent Parallel Criticsility Equation. The probabilities of one Conditioning Arrow 

being longer than another is either 0.000 or 1.000 for any combination of conditional 

VEdues. The conditional probability is the only probability associated with a combination 

of Conditioning Arrow durations. The Conditioned Arrow duration distributions in the 

Parallel Merging Tree provided the Dependent Parallel Criticality Equation the 

probabUities for calculations. The same duration distributions are also used to calculate 

the Van Slyke criticallties for the Conditioning Arrows. 

The first step in calculating the Van Slyke criticallties for Conditioning Arrows is to 

examine what happens at the Border Nodes. Border Nodes are the Splitting Nodes which 

simultaneously end Conditioning Arrows and start the Starting Arrows (Starting Arrows 

are also Conditioned Arrows). The conditional durations of the Conditioning Arrows are 

Initially assigned to the Border Nodes before being translated into the Starting Arrow 

duration distributions. A Border Node conditional duration is the largest path duration 

from the paths leading from the source node to the Border Node. The Van Slyke 

criticallties of the Starting Arrows of a Border Node contribute to the Van Slyke 

criticallties of all Conditioning arrows which are on the critical paths leading up to the 

Border Node. 

The algorithm identifies the Border Nodes and the paths leading up to It. For each 

path, a number Is assigned, the ending Border Node is recorded, and the defining 

sequence of Conditioning Arrows Is recorded. Then, for each combination of 
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Conditioning Arrow durations, the algorithm sums the conditional duration of all paths 

leading to Border Nodes, designates and records the critical paths, and records the 

numbers of the critical paths that are associated with each Conditioning Arrow. 

Conditioning Arrow Van Slyke criticalities are a function of what Starting Arrows 

follow the conditioning arrows' critical paths leading to the Border Nodes. The Van Slyke 

criticality for Conditioning Arrows is 0.000 for the skeletal network when the 

Conditioning Arrow is not on a critical path. The Vsui Slyke criticality of a Conditioning 

Arrow that Is on 1 critical path ending in a Border Node with has 1 Starting Node is the 

Van Slyke criticality of the Starting Node. If, on the other hand, the Conditioning Arrow 

leads to multiple Starting Arrows, the Van Slyke criticality calculation Is a Joint 

probability problem. 

The Van Slyke criticality of any Conditioning Arrow is contained in the Van Slyke 

criticalities of the Starting Arrows which follow any critical path to Border Nodes that 

includes the Conditioning Arrow. The Van Slyke criticalities for a set of Starting Arrows, 

and thus a Conditioning Arrow, is the union of dependent probabilities. Concerning the 

probability of at least one of the events in the imion are true, Ross (1980) states the 

following: 

The probability of the union of n events equals the sum of the probabilities of 

these events taken one at a time minus the sum of the probabilities of these 

events taken two at a time plus the sum of the probabilities of these events taken 

three at a time, and so on (p. 6). 

The algorithm, therefore, calculates the probabilities that a set of Starting Arrows 

indicated by a Conditioning Arrow are simultaneously Van Slyke critical. To have 

simultaneous Van Slyke criticalities, there must be more than one critical path. Each 

critical path must have the same duration and be of greater duration than other paths or 

they wouldn't be critical paths. The probabilities that any two paths have Identical 

durations is given by Equation (13). The probability that a path is critical over other 

path is given by Equation (7). The two equations can be combined to calculate the 

simultaneous Van Slyke criticalities of any set of Starting Arrows. 

For any set of Starting Arrows, label the Starting Arrow set and all arrows following 

the Starting Arrow set to the last merging node as Champion Arrows. All other arrows 

are designated Competing Arrows. The labels come irom the paths the arrows form: the 
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Champion Arrows form the paths of Interest, and the other arrows form paths that 

compete for crltlcality. 

Starting at the last merging node and proceeding backwards until the Starting Arrows 

are reached, the probability that Starting Arrows eire simultaneously on critical paths Is 

calculated by climbing the Parallel Merging Tree. To build a formula equivalent to 

Equation (15) for each set of Starting Arrow Van Slyke crlticallty ties, the rules are as 

follows. The last merging node simis over its duration range as memy factors as there 

are merging airrows. The duration range of the last merging node is relevant to all 

Starting Arrows since the paths that the Starting Arrows begin mu3t end with the last 

merging node. The merging arrows which are labeled Champion Arrows have a 

summation for a factor, and the arrows which are labeled Competing Arrow have a 

cumulation probability from £in accumulated arrow duration distribution for its factor. 

The summations for Champion Arrows are over the range of the merging Champion 

Arrow, and Includes as factors the p.d.f. of the Champion Arrow, and the probabUItles 

from arrows which merge at the Champion Arrow's starting node, provided the node is 

not a Border Node. Again, the mer^ng probabilities are in the form of p.d.f. distributions 

for Champion Arrow durations and in the form of c.d.f. distributions for the Competing 

Arrows. The subscripts for the merging arrows is the difference of the last merging 

node's duration and all other summation dtiration Indexes. 

Once the probabilities of Van Slyke crlticallty ties for all combinations of a set of 

Starting Arrows have been figured, the Van Slyke criticallly of the Conditioning Arrow is 

calculated. The Van Slyke criticalitles of the Starting Arrows are svmimed and adjusted 

by the probabUItles of ties according to the description of Ross (1980). The procedure is 

repeated for all combinations Conditioning Arrow durations. The Van Slyke crlticallty for 

the Conditioning Arrows Eire then accumulated over each conditioning combination. 

Algorithm Summary 

A summary of the sdgorlthm Is presented in Table 8. The algorithm follows an 

encouragement by Bowman: "estimate project completion time simultaneously with ... 

criticalitles" (BowmEin, 1995, p. 66)." Algorithm calculations for duration distributions 

are also needed to calculate arrow Van Slyke criticalitles. Crlticallty and duration 

probabilities are related In that crltlc£il paths determine durations. 
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The algorithm calculates a network duration distribution that is mathematically 

correct in its duration range and upper-tail duration probabilities via a skeletal network. 

The skeletal network is constructed from the arrows in the paths with the longest 

durations. The network range is determined by choosing the paths with the longest 

minimum and maximum durations. The right taU probabOities are determined by the 

paths with the longest maximum durations. Once constructed, the skeletal network is 

analyzed with exact calculations. The range of exact ri^t-tail probabilities is from the 

maximum network duration to the maximum duration of the longest path not Included in 

the skeletal network. 

The Eilgorithm efficiently estimates Van Slyke criticalities and duration probabilities 

not in the right duration distribution tall. Efficiency of the algorithm comes from picking 

the significant few arrows In the network and ignoring the trivial meiny. The Van Slyke 

arrow crlticality estimates are biased toward the longer network durations because the 

algorithm picks the paths with the longest durations. This bias is actually beneficial to 

management who are most concerned with project overruns. The duration probability 

estimates between the upper-tail and the minimum network durations are dominated by 

the longest paths, but other paths contribute to duration probabilities in this region. The 

estimates could be Improved if more paths were included in the skeletal network, but 

efficiency will suffer. 
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Tabled: StefxsoftheAlgQrlthin. 

Stq} StepDescriptton 
1 Identi^'^ an paths In the network and reoond their arrows. 
2 Set all arrows within the network to their minimum durations. 
3 Calculate and record the minimum durations of all paths. 
4 Eteslgnate the path with the longest minimum duration as skeletal path number 1. 
5 Set all arrows within the netwcark to their maximum durations. 
6 Calculate and record the maximum durations of an paths. 
7 Rank the paths in descending order by their maximimi durations. 
8 Designate skeletal paths 2-61^ picking 5 additional paths with the longest maximums. 
9 Identify and record the arrows in the 6 skdetal paths. 

10 Construct and record a skdetal network from the arrows in the 6 skdetal paths. 
11 Condense the skdetal network by performing series reductions vdiere possible. 
12 De^gnate skdetal nodes whidi start more than 1 arrow as SplitUng Nodes. 
13 Identify an reduced arrows preceding the splitting nodes. 
14 Calculate the combinations of condensed skdetal arrow durations which precede splits. 
15 Designate skdetal nodes which end more than 1 arrow as mei^glng nodes. 
16 Identify an reduced arrows foHowlng the meigbng nodes. 
17 Calculate the combinations of condensed skdetal arrow durations uiildi followmei^gers. 
18 Iffewercconbinations, designate arrows following mergers as conditioning arrows, 

otherwise designate the arrows preceding splits. 
19 Designate the other arrows as Conditioned Arrows. 
20 Desigt]ate conditioned arrows sharing a node with conditioning arrows as Starting Arrows. 
21 Assign to an conditioning arrows, their minimum durations. 
22 Calculate and record the product of the assigiied conditioning arrow duration probabilities. 
23 Labd the product of the conditioning arrow duration probabOities "Conditional PrbbabOity." 
24 Calculate conditioning node durations fixnn the conditioning arrow assigned durations. 
25 Trani^te the distributions oftheStartingArrows by the candittoning node duration. 
26 Calculate conditional network's distaibutions by parand-serles reduction operations. 
27 Multiply the conditional network duration distribution by the conditional probablll^. 
28 Accumulate the conditional network duration probabflities into a total distribution. 
29 Calculate the conditional Van S^e criticalities for the Starting and Conditioned Arrows.. 
30 Calculate the conditional Van S^e crlticaUties fcr the Conditioning Arrows. 
31 Multiply the conditional Van Sljice arrow criticalities by the Conditional Probabm^. 
32 Accumulate the condition^ calculated Van Sfyke criticalities into totals for an arrows. 
33 If available, assign a newconiblnaaan of durations to the ConditionlngArrows & go to Stq) 20. 
34 If new combinations are not available, calculations are complete. 
35 Record the total project duraticsi distribution fir>m the accumulated total probabilities. 
36 Record the total arrow Van Sljte criticalities fiiom the accumulated totals. 
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EVALUATION OF THE ALGORITHM 

Performance of the eilgorlthm Is demonstrated on the 40-arrow. 22-node network 

published by Kleindorfer (1971). The network is depicted in Figure 5 and wUl be referred 

to in the following text simply as the Kleindorfer network although Kleindorfer published 

other ones. Various researchers have studied Kleindorfer networks, among them have 

been Robillard & Trahan (1977), Shogan (1977), Dodin (1985b & 1985c), and Dodin & 

Sirvanci (1990). The largest Kleindorfer network has, in fact, become the benchmark for 

complex scheduling networks. Although Industry has had much larger networks, few, if 

any, exceed the complexity of dependency relationships within the Kleindorfer network. 

Another reason the Kleindorfer network is a benchmark is because of the proprietary 

data associated with many industry networks are not published. 

This chapter will test the algorithm described in the previous chapter on the 

Kleindorfer network. First, characteristics of the Kleindorfer network are reviewed. 

Second, an evaluation of the Kleindorfer network duration distribution by the algorithm 

is performed and compared with a SLAM II simulation. Third, the Van Slyke criticalitles 

are calculated by the algorithm for the Kleindorfer arrows and compared with simulation 

results. Finally, there is a brief discussion about the Kleindorfer network's duration 

distribution. — 

Kleindorfer Network 
The Kleindorfer (1971) 40-arrow, 22-node network, shown in Figure 5. Is "the largest 

stochastic network appearing in the open literature" (Dodin & Sirvanci, 1990, p. 402). It 

is "complex with respect to both its geometry and the probability distributions of the 

lengths of its arcs [arrows]" (Shogan, 1977, p. 377). The Kleindorfer arrow duration 

distributions are discrete and are assumed to be Independent. The arrow duration 

distributions are one of two Q'pes: uniform or triangulsir. The uniform distributions vary 

in their range, and the triangular distributions vary in both their range and the locations 

of the peak the range. Kleindorfer calculated arrow duration probabUitles by separately 

calculating the numerator and denominator of fractions. The Kleindorfer arrow duration 

distributions given in Table 9 present the fractional nimierator under the arrow duration 

columns, and the arrow's fractional denominator is given In the second colunm, 

abbreviated "Denom." The probability for any arrow's duration is found by dividing the 
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Table 9: Arrow Distributions for (he KletiKloifer (1971) Network. 
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arrow duration's numerator by the arrow's denominator. Blanks In Table 9 are 

Interpreted as zeros, 

Klelndorfer (1971) introduced the network to illustrate a procedure for bovmdlng 

network duration cumulative distributions. Subsequent to Klelndorfer publishing upper 

and lower bounds on his distribution, Shogan (1977) and Dodin (1985c) studied the 

network and published their own bounds on the cumulative duration distribution. Of 

the three, Shogan has the tightest bounds on the Klelndorfer network's cumulative 

duration distribution. Shogan's bounds are Illustrated In Figure 9. There has been 

nothing published about the Van Slyke criticalltles of the Klelndorfer network arrows. 

Algorithm Distribution Analysis On Kleindorfer Network 
The Klelndorfer (1971) network shown in Figure 5 meets all of the algorithm 

assumptions. The arrow duration distributions are all discrete and independent, the 

network has 1 source node and 1 sink node, and there are no loops in the precedent 

relationships. Therefore, no special processing is needed to adapt the network for the 

algorithm. 

The paths through the network shown in Figure 5 were numbered and defined in 

Table 4 by the path identification procedure described in a previous chapter. For each of 

Lower Bounds 

Upper Bounds 

Duration 

Figure 9: Shogan (1977) c.d.f. Bounds on Klelndorfer (1971) Network. 
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the 51 Klelndorfer network paths, the path durations are calculated by summing the 

minimum duration of its arrows, and then the path durations are repeated for the 

maximum arrow durations. The minimimi and maximum durations of each path is 

listed in Table 10, together with the path number and its defining sequence of arrows. 

The Klelndorfer paths in Table 10 have been sorted according to algorithm rules. 

Path 30 is ranked number 1 because its minimum duration of 48 Is greater thsin the 

minimum duration of any other path. The network minimum duration must also be 48, 

and the crlticality of any path duration below 48 is zero. 

The paths ranked 2 through 6 were chosen by the algorithm because of their high 

maximum dmations. In this case, the top ranked path, the one with the longest 

minimum duration, was not also amongst the longest maximimi duration paths. Path 27 

had the maximum path duration of 89 by summing the maximum arrow durations from 

Arrows 1.3, 11, 26, 36, 39, and 40. The 89 also determines the theoretical maximum 

limit for the network duration distribution. It Is Interesting to note that the meiximum 

duration of 89 is greater than the 82 that Shogan (1977) offered as the duration at which 

his bounding cumulative distribution converged to 1.000. The difference between a 

duration of 89 and the third ranked path's duration of 75 is 14. The probability of any 

duration greater thsm 75 depends only on Path 27 — all other paths are dominated. 

Likewise, the network duration probabilities of 73. 74, and 75 depend only on Path 27 

and Path 11. The 5 paths with the largest maximimi durations explain the range of 

network durations from 68 to 89. and the 5-path Interactions explains the durations' 

probabilities. This means that the probabUlties of over ^ of the network durations are 

calculated exacUyl 

The arrows from the 6 paths have been constructed into the skeletal network 

appearing In Figure 10a. By using a skeletal approach, the algorithm reduced the 

number of Klelndorfer network arrows from 40 to 20 and reduced the combinations of 
arrow durations from 2.3x10^4 to 2.7x10^^- The top 6 paths accounted for 50% of the 

network arrows, well above the 10 - 20% that Moder, Phillips, & Davis (1983) claim are 

of Interest to managers. By combining the arrows from 6 paths into a skeletal network, 

the paths may criss-cross. The 6 paths taken from the Klelndorfer network formed 8 

paths when the arrows were made into the skeletal network. The 2 additional paths are 

Paths 38 and 39 which are ranked 8 and 9, respectively. 
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Table 10: Path Maximums of the 40-Arrow Klelndorfer (1971) Network. 

Path Ordered Path Arrow Numbers 

Number Min. Max. 1st 2nd 3rd 4th 5tli 6th 7th 8th 9th 10th 

30 48 53 1 2 5 24 38 40 

27 14 89 1 3 11 26 36 39 40 
11 27 75 1 3 10 16 29 37 40 
12 26 72 1 3 10 16 31 36 39 40 
37 22 70 1 2 6 9 16 29 37 40 
13 28 68 1 3 10 16 28 34 39 40 

2 27 67 1 3 10 16 28 32 35 39 40 
38 21 67 1 2 6 9 16 31 36 39 40 
39 23 63 1 2 6 9 16 28 34 39 40 
18 22 62 1 2 6 9 16 28 32 35 39 40 
45 23 61 1 2 5 23 27 34 39 40 
23 21 61 1 2 4 12 22 29 37 40 
41 21 61 1 2 4 12 22 29 37 40 
8 12 61 1 3 11 20 25 30 37 40 

14 38 60 1 3 10 16 28 32 38 40 
16 37 60 1 2 5 24 35 39 40 
3 31 58 1 2 5 19 25 30 37 40 

46 22 58 1 2 6 8 14 31 36 39 40 
24 20 58 1 2 4 12 22 31 36 39 40 
42 20 58 1 2 6 7 12 22 31 36 39 40 
34 30 57 1 2 6 8 13 24 35 39 40 
28 28 56 1 2 5 23 27 34 39 40 
10 25 56 1 3 10 18 25 30 37 40 
40 33 55 1 2 6 9 16 28 32 38 40 
15 27 55 1 2 5 23 27 32 35 39 40 
17 24 55 1 2 6 8 13 19 25 30 37 40 
6 21 55 1 2 4 12 21 27 34 39 40 

21 21 55 1 2 6 7 12 21 27 34 39 40 
9 24 54 1 3 10 17 30 37 40 

47 24 54 1 2 6 8 14 28 34 39 40 
25 22 54 1 2 4 12 22 28 34 39 40 
43 22 54 1 2 6 7 12 22 28 34 39 40 
1 20 54 1 1 2 4 12 21 27 32 35 39 
4 20 54 1 2 6 7 12 21 27 32 35 39 

31 23 53 1 2 6 8 14 28 32 35 39 40 
5 21 53 1 2 4 12 22 28 32 35 39 40 

20 21 53 1 2 6 7 12 22 28 32 35 39 
49 21 53 1 2 6 8 13 23 27 34 39 40 
33 20 52 1 2 6 8 13 23 27 32 35 39 
32 24 51 1 2 6 8 15 30 37 40 
36 20 51 1 2 6 8 13 23 27 34 39 40 
51 41 50 1 2 6 8 13 24 38 40 
35 19 49 1 2 6 9 17 30 37 40 
29 38 48 1 2 5 23 27 32 38 40 
7 31 47 1 2 4 12 21 27 32 38 40 

22 31 47 1 2 4 12 22 28 32 38 40 
48 34 46 1 2 6 8 14 28 32 38 40 
26 32 46 1 2 4 12 22 28 32 38 40 
44 32 46 1 2 6 7 12 22 28 32 38 40 
19 23 46 1 2 6 33 37 40 
50 31 45 1 2 6 8 13 23 27 32 38 40 
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Figure 10: The Top 6-Path Skeleton of the Klelndorfer (1971) Network, 
(a) The best skeleton network, (b) The conditioned skeletal network. 
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Repeating the series reduction operation 6 times reduces the number of skeletal 
arrows to 14 and the number of arrow dwation combinations to 4.663x10^°. The 6 

series reduction operations are shown in Table 11. The first column gives the number of 

the new duration distribution calculated by series reducing the 2 arrow duration 

distributions appearing in the second and third columns. The fourth column expresses 

the reduction operations in symbolic form. The "A" before the numbers In Table 11 

define arrow duration distributions. If the number following the "A" is 40 (the number of 

arrows in the Kleindorfer network) or less, the arrow duration distribution is given as 

part of the Kleindorfer network input. Arrow nimibers over 40 represent derived arrow 

duration distributions. In the symbolic equation, the is read "is distributed as" whUe 
the "©" represents the distribution series reduction operation of Equation (1). After 6 
series reduction operations, no more series or parallel reduction operations are possible. 

Since the skeletal network has more than 1 arrow at this point, it Is not a parallel-series 

network. Conditioning the network is required for analysis. 

Conditioning the 14-arrow skeletal Kleindorfer network Is accomplished by 

conditioning on sirrows that come before Splitting Nodes or after Merging Nodes. The 

skeletal network Splitting Nodes are Nodes 1, 2. 3, 5, and 13, and the Merging Nodes are 

Nodes 5, 13, 14, 19, and 20. Arrows 1, 2, 3, 6, and 9 precede the Splitting Nodes and 

have 3,120 combinations of arrow durations, after series reducing Arrows 6 and 9. 

Arrows 16. 28, 29, 31, 34, 36, 37, 38, 39, and 40 foDow the Merging Nodes and have 

1,033,695 combinations of arrow durations, after series reducing Arrows 28 and 34 and 

reducing Arrows 29 and 37. The Kleindorfer Conditioning Arrows are assigned to the 

arrows between the Source Node and before the Splitting Nodes. Arrows 1 and 40 have 

zero durations with a probabilities of 1.000. They have no effect on the network 

Table 11: Series Reduced Duration Distributions in Skeletal Network. 

Reduced 
Distribution 

Arrow Duration 
Distributions Reduction Operation 

A41 AS A24 A41-A5©A24 
A42 A6 A9 A42~A6©A9 
A43 All  A26 A43~A11©A26 
A44 A28 A34 A44-A28©A34 
A45 A29 A37 A45~A29©A37 
A46 A41 A38 A46-A41©A38 
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statistics. Modern computers are quite capable of performing analysis on 3.120 

combinations in reasonable time. Figure 10b Illustrates the skeletal Klelndorfer network 

arrangement of Conditioning Arrows and Conditioned Arrows. Series reduced arrow 

distributions are indicated by listing the original Klelndorfer arrow numbers. 

For each combination of Conditioning Arrow durations, the Conditioned Arrow 

dmatlon distributions are combined in parallel and series distribution reduction 

operations to calculate the conditional network distribution. Table 12 lists the 

conditional reduction operations for the skeletal network's Merging Parallel Tree. In 

Table 12, an "A" indicates an original Klelndorfer network arrow distribution, an "N" 

indicates a Klelndorfer network node number, and an "S" indicates either a Starting 

Arrow duration distribution or another Accumulated Arrow Duration Distribution. The 

. ®. symbol indicates a parallel distribution reduction operation via Equation (3) and 
Equation (4). 

Duration probabilities from the conditional network duration distributions are 

multiplied by the conditional probabOlty and summed across conditional combinations to 

calculate the unconditional probabilities for all network durations. The network duration 

distribution from the algorithm is shown in Figure 11. 

Table 12: Conditioned Arrow Duration Distribution Reduction Operations. 

Reduced 
Distribution 

Reduction 
Duration Distributions Reduction Operations 

S38 N2 A46 S38~N20A46 
S37 N13 A45 S37~N13©A45 
834 N13 A44 834-N13©A44 
S31 N13 A31 S31~N13©A31 
S26 N3 A43 826~N3©A43 

N14 826 831 N14~S26©S31 
S36 N14 A36 S36~N14©A36 
Nig 834 836 N19~S34®836 
S39 N19 839 839~N19©A39 
N20 838 S37 839 N20 - 838 ® 837 ® 839 
840 N20 A40 S40~N20©A40 
N21 840 N21-S40 
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Up to duration 70. the algorithm's network duration distribution falls within Shogan's 

bounds. For durations 71 to 89, the algorithm's cimiulative distribution function is 

below Shogan's. Since the algorithm probabilities in that range are exact. Shogan's 

formula is wrong. To be sure, the region of error only Involves 4% of the distribution, but 

that is the 4% which schedulers are most concerned about! 

The SLAM II simulation program was constructed according the to procedure 

described by Pritsker (1995). The simulated network duration distribution in Figure 11 is 

the collective results of 10 simulation runs of 10,000 network samples each. Each run 

used a different random number stream using the default random seeds. Out of a total 

of 100,000 simulations, SLAM II observed a maximum duration of 87 with 1 realization. 

From algorithm calculations, network durations being greater than 87 occur on average 

1:623,135 realizations. The probability of SLAM II observing either duration 88 or 89 is 

about 0.148 according to the Poisson distribution (Snedecor & Cochran, 1989). With 

over 85% probability of not observing the 2 highest durations, the simulation rvms are 

not invalidated. 

A Chi-squeire Goodness-of-flt test was performed on the right-tail portion of the 

Kleindorfer network duration distribution over the durations 68 to 89. The null 

hypothesis is that the distributions are identical, and the alternative hypothesis is that 

they are not. The SLAM II simulation provided the observed values, and the algorithm 

0.09 
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Algorithm 

SLAMIi 
o 
_Q 
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Figure 11: The Duration Distribution for the Kleindorfer (1971) Network. 
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provided the expected values by multiplying its calculated duration probabilities times 

100,000, the number of simulation runs. The durations from 85 to 89 were combined 

into one cell because Walpole & Myers (1978) recommends at least 5 observations per 

cell. The chi-squ£ire statistic with 18 degrees of freedom was 18.804. Whereas the 95% 

critical value of the Chi-square distribution is 28.869, the null hypothesis was not 

rejected, and the distributions are assumed to be statistically identical. Szmipling error, 

as described in the previous petragraph, explains why the SLAM II simulation did not 

observe the duration of 88 and 89. 

Both the algorithm £md SLAM II predict a blmodal distribution. Compared to the 

SLAM II estimate of the Kleindorfer network duration distribution, the algorithm 

overestimates the probabilities associated with the first mode and underestimates 

probabilities in the second mode. This is due to limited information from the middle part 

of the distribution. The run time of the algorithm without calcvilating Van Slyke 

crltlcallties was 3-mlnutes and 15-seconds on a same 486DX/50 personal computer 

using Microsoft's FORTRAN PowerStation. The total run time of the 100,000 SLAM II 

simulations was over 1-hour and 45-minutes on the same 486DX/50 personal 

computer. The Pritsker (1995) PERT simulation model does not calculate crltlcallties. 

Algorithm Van Slyke Crltlcallties In Kleindorfer Network 
Arrow Van Slyke criticality calculations for the Kleindorfer network are based upon 

the skeletal network depicted in Figure 10b and the Van Slyke criticality calculation 

methods introduced In the previous chapter. Van Slyke critiCEdlty calculation formulas 

based upon Equation (16) for the Conditioned Arrows are given in Table 13. The 

equations take, as input, the conditional duration distributions. 

The Conditioning Arrow Van Slyke crltlcallties are Joint probabilities of the 

Conditioned Arrow Van Slyke crltlcallties. The skeletal network Conditioning Arrows end 

In three Splitting Nodes; Node 2, Node 13. and Node 3 (see Figure 10b). Paths 

containing the Conditioning Arrows may be critical to 0 or I or 2 of these nodes 

depending on the relative values of the Conditioning Arrow durations. The skeletal 

network precedents do not allow an arrow to be on critical paths that reach all 3 nodes. 

Arrow 16 is always Van Slyke critical when at least 1 of the Starting Arrows starting with 

Node 13 are critical. The Arrow 16 Van Slyke criticality is the union of Van Slyke 
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Table 13: Van Slyke Critlcallty Equations for Conditioned Arrows. 

Arrows Van Slyke Critlcallty Equation 

5.24,38 

29,37 

28,34 

36 

39 

11,26 

31 
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16338 ' ' ' 

2 fs37.Fs38.Fs39, 
16837 ' ' ' 

2 fs34.Fs36, 
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2 fs36.Fs34. 
16S36 ' 
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criticalitles for Starting Arrows 37. 34, and 31. The Van Slyke critlcallties and Van Slyke 

tying critlcallties to sum and subtract to calculate Arrow 16 are given in Table 14. 

The Conditioning Arrows portion of the skeletal network has a Merging Node. The 

merger necessitates determining whether the merging paths are critical to Merging Node 

5 (and subsequently to Node 13). A Conditioning Arrows on a critical path must add the 

Node 13's StEirting Arrow Van Slyke critlcallties to the arrow's union of Starting Arrow 

Van Slyke crltlcEdltles. If 1 of the Conditioning Arrows 6, 9. and 10 is not on a criticed 

path to Node 13, its Vein Slyke critlcallty is 0.000. Arrow 2 Is always on the critical path 

to Node 2, and is critical to Node 13 if the simi of the conditional durations of Arrows 2, 

6, and 9 (the Arrows 6 and 9 are actually represented by the series reduced Arrow 42). 

Arrow 3 Is always on a critical path to Node 3 and Is sometimes on a critical path to Node 

13. 
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Table 14: Van Slyke Critlcalltles for Conditioning Arrows. 

Arrows Conditional Van Slyke Criticality Equation Effectiveness 

A2 Crit^=Crits38 SQESIO 

Crlt;^2®Crits37+Crits34+Crits3j+Critsjg 
~Crits37_s34—Crits37,g3i ~Crltg37_g38—Critg34_s3i ~Crits34_s3g~Crlts3i ,S38 
+Critsa7.s34,s31+Crits57.s34.s3g+Crits87.s3i.s38+Crits34_s3i_g38 
-Crlts37,s34,s31.838 

S9<S10 

A16 CritAie=Crits37+Crits34+Crits3, 
-Crits37 g34-Crits34.s31 "Critgj, 337 
+Crits37s34sji 

Everywhere 

A6,A9 Crtt^g=Crit^=Crits37+Crits34+Crits3j 
—Critg37S34~Crits34_s3j—Critsjj_s37 
+Crits37 S34_S3I 

S9 2S10 

Crit^e=Crit^=0.000 S9<S10 

AlO Crit^jQ=Critsj7+Crits34+Crits3j 
-Critsj7,s34—Crits34.S3l~Critsji.s37 
+Crits37.s34,s31 

S9 jiSlO 

CritA,o=0.000 S9>S10 

A3 Crit^=Crits2e SIO2S9 

CrltA3==Crits39+Critg37 
-Crits39,s37 

S10<S9 

The probabilities of Van Slyke crlticality unions for the Conditioning Arrows are given 

in Table 14. The Conditioning Arrow durations To determine whether the merging paths 

formed from Conditioning Arrows are criticEd, the conditional path durations to Node 5 

are calculated. Table 2 paths are referenced in the Effectiveness column of Table 14. 
The path durations are defined as S9-A2©A6©A9 and S10~A3©A10. 

The union of Vein Slyke Starting Arrow criticalities involve calculating the 

probabilities that some sets of Conditioning Arrows are both Van Slyke Critical and 

identical In path duration to each other. Formulas for the tying Van Slyke criticalities 



www.manaraa.com

70 

listed in Table 14 are given in Table 15. The probabilities calculated from Table 15 are 

substituted into the formulas of Table 14 to c£ilculate the Conditioning Arrow Van Slyke 

criticalities. 

The algorithm csilculatlons of the Van Slyke arrow criticalities eu-e listed in Table 16. 

Table 16 also contains the simulated estimates of Van Slyke arrow criticalities from 

1,000,000 FORTRAN network simulations and the highest ranking path nimiber that the 

arrows appear. The algorithm assumes that arrows not in the skeletal network have zero 

probabilities. This, of course, is not always the case, but the goal is to identify the top 

arrow criticalities. An index to the Importance of arrows not quantified by the skeletal 

network is the highest path rank of the arrow. Arrows with higher criticalities tend to be 

on higher ranked paths. 

The algorithm identified all arrows with Van Slyke criticalities above 0.100000. These 

same sirrows Eire particularly important when considering the right-end of the network 

duration distribution. At lower network durations, many more arrows may be critical. 

While it is difilcult to predict before hauid which arrow will be critical, it is probable that 

the duration will not be extreme. It Is only the arrows that contribute to project overrun 

that must be monitored and memaged. 

Some of the Kleindorfer arrows actually had zero criticalities. Arrow 33 was predicted 

to have zero criticality by the algorithm because its Highest Path Rank was 50, lower 

than rank 45 rsink needed to compete for the lower bound of the network distribution. 

The other eirrows with zero criticality were Arrows 13, 15, 21, 23, and 27. Arrow 13 Is 

never critical because Arrow 5 on the path ranked number 2 dominates the series of 

Arrows 6, 8, and 13. Arrow 14 has some probability of being critical, so Arrow 8 has 

the SEime criticality. Arrow 15 Is dominated because the maximimi duration of the path 

subset of Arrows 6, 8, and 15 is 14 which is shorter than the path subset of 5, 19, and 

25. Arrows 21, 23, and 27 are dominated by Path 27, the one with the longest duration, 

whose minimum duration from Node 2 to Node 18 Is 26 whereas the maximum duration 

from Node 2 to Node 18 on Path 1 Is only 22. Node 15 and Its connecting arrows have no 

effect on the duration of the network. Besides Arrow 33, the other arrows whose 

criticality was zero were dominated by the top ranked paths. This Is an excellent 

example of the significant few versus the trivial many concept. 
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Table 15: Equations to Calculate Tying Van Slyke Critlcalitles. 

Tying Critical 
Arrows Tying Van Slyke Criticallty Equation 

S34.S37 Z fs37,Fs38i( 2 fA39jfs34i.jfs36,.j 1 
1€N20 \j€Ad9 / 

S31.S34 2 FS37IFS38, 2 fA39jfs34i_j( 2 fA36kfS31i_j.kFs26i.j.k 1 
1€N20 I J€A39 \]c€A36 / I 

S31.S37 2 fs37,Fs38, 
ieN20 ' 

S37,S38 2 fs37,fs38.Fs39i 
1EN20 

S34,S38 2 Fs37/S38i( 2 fA39,fs34ijFs36i_j] 
16N20 '\jeA39 ^ ^ V 

S31,S38 2 Fs37,fs38, 2 fA39,Fs34,_,( 2 fA36kfS31i_,.kFs26i.,_k) 
16N20 " '[jeA39 ' 'HkeA36 ^ ^ /J 

S37.S39 2 fs37jFs38jfs39, 
ieN20 

S31.S34.S37 2 fs37,Fs38, 
1EN20 

S34.S37.S38 2 fs37,fs38, (FKTORK * * ieN20 

S31.S37.S38 2 fs37.fs38, 4£=KTORK * ' 16N20 

S31,S34.S38 2 Fs37,fs38, 4CKTO/\ * ' 1EN20 

S31.S34.S37.S38 2 fs37,fs38, 
ieN20 ' 

jJa, fA39,fs34.4^^ fA36»fs3.^.^»Fs26„.K) ] 

2 fA39ifs34i.,Fs36,., 
EA39 •' ^ •' J 

is iH-kf ] 

L fA36,fs3lH-»Fs26,.j.K) ] 

2/A39/s34..,(^2^fA36kfS3.,.j.KFs26^^^)] 

J€A39 

jeA39 

jeA39 
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Table 16: Arrow Critlcallties of the Klelndorfer (1971) Network. 

Arrow Critlcallties 

Number Algorithm Simulation Path Rank 
1 1.000000 1.000000 1 
2 0.200265 0.229722 1 
3 0.841144 0.829699 2 
4 0.000000 0.000202 12 
5 0.197979 0.227529 1 
6 0.002559 0.002552 5 
7 0.000000 0.000136 13 
8 0.000000 0.000220 11 
9 0.002559 0.002225 5 

10 0.472573 0.471929 3 
11 0.394500 0.382064 2 
12 0.000000 0.000309 12 
13 0.000000 0.000000 21 
14 0.000000 0.000220 11 
15 0.000000 0.000000 40 
16 0.472875 0.472158 3 
17 0.000000 0.000013 29 
18 0.000000 0.000072 23 
19 0.000000 0.013110 17 
20 0.000000 0.001818 14 
21 0.000000 0.000000 27 
22 0.000000 0.000309 12 
23 0.000000 0.000000 22 
24 0.197979 0.217371 1 
25 0.000000 0.014727 14 
26 0.394500 0.380556 2 
27 0.000000 0.000000 22 
28 0.063258 0.103776 6 
29 0.321469 0.300266 3 
30 0.000000 0.014730 14 
31 0.113210 0.096355 4 
32 0.000000 0.070019 7 
33 0.000000 0.000000 50 
34 0.063258 0.042040 6 
35 0.000000 0.074506 7 
36 0.497730 0.468502 2 
37 0.321469 0.310896 3 
38 0.197979 0.203606 1 
39 0.544076 0.551898 2 
40 1.000000 1.000000 1 
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Testing Of A Blmodal Distribution 
The indication of a blmodal distribution for the duration of the Klelndorfer (1971) 

network Is a somewhat surprising result. Literature would seem to indicate the resulting 

distribution should be normal because of the Central Limit Theorem (Anklesaria & 

Drezner, 1986; Kaufmann & DesbsizeOle, 1969; Malcolm, Rosenbloom, Clark, & P£izar. 

1959). Much of the literature concentrates on finding the moments, especially the mean 

and standard deviation of the distribution. Many practitioners imknowlngly use the 

mean and stemdard deviation to calculate probabilities using the Normal distribution. 

PERT does that. 

The authenticity of the blmodal distribution was investigated. First, the Shogan 

(1977) bounds for the Klelndorfer network cumulative distribution were converted into 

probabOlfy distribution functions. Both the upper and lower bounds had blmodal 

distributions. Shogan did not mention this. Perhaps this is why the results were 

presented in tabular cumulative form. Another verification was the 10 runs of 10,000 

SLAM II simulations. In every one of the 10 runs using different random number 

streams, the blmodal distribution was apparent. Some of the runs showed small 

addltlonsd modes, but 2 modes were apparent in all 10 runs. The probability of this 

happening by chance is small. The distribution generated by the 1,000,000 FORTRAN 

simulation runs also showed 2 modes. 

Although the Central Limit Theorem has worked well adding many random variables, 

there Is another phenomenon In networks. There are maximums of variables In parallel, 

not ones In series. The resulting distribution is more sinalogous to the Extreme Value 

Distribution (Dodln & Slrvancl, 1990). The mechanisms of blmodal distribution 

generation warrants additional comment. The next chapter does this. 
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A BIMODAL DISTRIBUTION FROM NORMAL DISTRIBUTIONS 

Bimodal distributions are not typically fotmd In statistical analysis procedures. 

Typical modeling distributions are the Exponential, Gamma, Polsson, Beta. Normal, the 

t-dlstribution, the F-distribution, the Chl-Squared distribution, binomial, geometric. 

Weibull, trlEingular, and uniform. None of which are bimodal. 

PERT uses the Normal distribution for its estimate of the project duration (Malcolm, 

Rosenbloom, Clark, & Fazar, 1959). Since then, publications ei^qplalning the PERT 

method and much of the subsequent research have perpetuated the normality 

assumption. Some who have made this assimiptlon are Anklesarla & Drezner (1986) and 

Kauimann & Desbazellle (1969). Dodin & Slrvanci (1990) suggest the duration of 

projects eire somewhere between the Normal eind the Extreme Value distributions, both of 

which are unlmodal. 

The possibility of more than one mode of a duration distribution was noted by 

Chames, Cooper, & Thompson (1964): "The distribution of completion times ... may 

often be multimodal, contrasting with (erroneous) central limit theorem usages in the 

literature" (p. 460). They summarize "multimodallty is to be expected whenever there are 

parallel links or chains that alternate in crltlcallty and that involve sufficiently different 

times" (Chames, Cooper, & Thompson, 1964, p. 468). 

Because of the central limit theorem, the simi of many random variables tends to be 

normally distributed. Therefore, the distribution of a single path, without regarding its 

Interactions with other paths, will tend to be normally distributed because its duration Is 

the sum of Its constituent arrow durations which are randomly distributed variables. 

The complication comes when parallel paths contend for the maximum project duration. 

Clark (1961), one of the original PERT authors, addressed the problem of estimating 

four distribution moments from the maximum of two paths that have Joint normally 

distributed durations. He starts his analysis by trcinsformlng the distribution of one 

path into a standard, normsil distribution. He then represents Jointly distributed normal 

distributions by expressing three parameters as a function of the transformed 

distribution. Clark recognized that the maximum of two normsils would not be normal, 

but he did not report any bimodal distributions. 

The bimodal phenomenon observed for the Klelndorfer (1971) network was the result 

of taking the maximums from at least 2 distributions. The algorithm combined the 

arrows from 6 different paths Into a skeletal network. The paths with the longest 
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maximum and minimum durations (the paths are ranked 1 £ind 2) £ire independent from 

each other — they have no arrows in common except for Arrows 1 and 40 which have 

fixed durations. The algorithm's bimodal duration distribution (see Figure 11) appears to 

have the peaks of 2 distributions. The peak with shorter durations corresponds to the 

midpoint between the minimum and maximimi durations of the number 1 ranked path. 

The other peak appears to be a continuation of the distribution that forms the right 

duration distribution tail. The right hump in the bimodal distribution must be from the 

5 paths having the longest maximvun durations. 

The maximum covariance between the number 1 ranked path and any other path is 

0.5, the variance of Arrow 2. The variance of the number 1 ranked path. Path 30, is 1.0 

if the path duration range is assumed to be 6 standard deviations wide. Path 39 has the 

smallest duration range of the 3 other paths that include Arrow 2. Similarly, Path 39 

has a variance of 46.7. The maxlmimi correlation between Path 30 and Path 39 is then 

0.07. For all practical purposes. Path 30 is independent of all other paths through the 

skeletal Kleindorfer network. 

The analysis of bimodal duration distributions will assume the phenomenon is a 

function of 2 parallel paths. The path durations are further assumed to be normally 

distributed. Thus, the analysis will be the effects of taking the maximums of 2 

independent, normal, and discrete distributions. The analysis proceeds similarly to the 

study performed by Clark (1961), but the focus is on distribution modes, and no 

correlation effects will be examined. Figure 12 shall be the model network for analysis. 

Network duration distributions are computed by the Parsillel Reduction Operation, using 

Equations (3) and (4). 

Like Clarke (1961), the bimodal analysis adapts parametric measures based upon 
Arrow I's standard deviation, oi. Assume, without loss of generality, that Arrow 2's 

standard deviation is greater than or equal to Arrow I's st£indard deviation (oi £02). 

The ratio of ^ defines a parameter. Call this parameter "R" for ratio. 

Figure 12: Condensed Network Model for Bimodal Distribution Ansilysis. 
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(17) 

The only other statistic that could efTect the comparison between the distribution shapes 

of Arrows 1 and 2 is the difference in their means. The difference, rather than the 

absolute value, of the means is important because the absolute-valued means shift the 

distribution along the abscissa, but the difference In the means determine where one 

mean falls on the distribution of the other arrow's duration. This difference is also 
expressible as a function of o i :  Doi.  

The distribution shape of the duration of the project in Figure 12 is represented by 3 

parameters: R and D. 

For the case of R=1.00 and D=0.00, the durations of Arrows 1 and 2 are identically 

distributed. The resulting distribution appears in Figure 13. The maximum duration 

distribution is shifted to the right of the 2 original duration distributions. The Extreme 

Value distribution (Dodln & Sirvanci, 1990) predicts this. If a large number of parallel, 

identically distributed were reduced with the parallel operation, the results would be the 

Extreme Value distribution. The reduced distribution is clearly imimodal. 

As the ratio "R" is Increased whUe the means of Arrows 1 and 2 remain the same, the 

effect is to gather up the left tall of the larger variance distribution into the distribution of 

the smaller variance arrow (see Figure 13 a, b, & c). Changing the shift of means 

between Arrows 1 and 2, on the other hand, tends to skew the lower mean's distribution 

toward the right. As the difference between the means tends to get above 2 standard 

deviations (they both have the same standard deviation at this point), the maximum 

distribution becomes, essentially, the larger mean arrow's distribution (see Figure 14). 

As "R" and "D" are varied, the bimodal distribution is created. Figure 15 defines 

indicators for unusually shaped duration distributions. Figure 15a and Figure 15d 

shows instances where the distribution in transition from a unimodal to a bimodal 

distribution. The author of this thesis calls these "lumpy" distributions. If these lumps 

and bimodals are encoded, they may be simulated and tabulated. The lumpy left tailed 

distribution of Figure 15a is labeled as "-1". The two bimodal distributions, Figure 15b 

D- °1 (18) 
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0.06 

0.04 

0.02 
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Duration 

(b) 
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- Arrow 1 Distribution 

Arrow 2 Distribution 

Network Distrbution 
R = 10.0. D = 0.0 

0.15 

0.10 • • 

0.05 

0.00 
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Figure 13: Effects of Standard Deviation on the Maximum of 2 Distributions, 
(a) The maximum of 2 Independent, Identically distributed Normal Distributions, 

(b) Maximum Distribution of common means, unequal variance distributions, 
(c) A maximum distribution with a sharply curtailed left-tail. 
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0.04 
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' Arrow 1 Distribution 0.10 

Arrow 2 Distribution 
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Netwotl< Distrfcution 
R = 1.0, D = 2.0 0.06 •• 

O. 
0.04 

0.02 

0.00 
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Figure 14: Effects of Mean Differences on the Maximum of 2 Distributions, 
(a) The effects of a small shift in peirallel meems on the maximiun distribution, 

(b) The effects of a moderate shift in parallel means on the maximum distribution, 
(c) Moderately large shift in mean differences result in decreasing impact. 
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—«>— Nttwofk DWributlon R>4.S. D-6.0 

020 

0.10 

0.00 

- Arrow 1 OUiribubon 
Anow2 Ot»tribubon 
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Figure 15: Blmodal and Lumpy Distributions. 
(a) A liunpy left-tailed distribution. Coded as "-1". 

(b) A blmodal distribution with the greater mode on the right. Coded as "2". 
(c) A blmodal distribtion with the greater mode on the left. Coded as "-2". 

(d) A lumpy right-tailed distribution. Coded as "1". 

and Figure 15c are encoded with a "2". with a plus or minus in front depending on 

whether the left mode or the right mode is greater. The minus is indicated when the 

lesser mode is greatest. A right lumpy tall gets a "1" encoding. The distribution results 

of varjTing "R" and "D" are shown in Table 17. Unimodzil, nonlumpy distributions are 

encoded by a "0" in Table 17. 

Blmodal distributions may occur when the distribution of Arrow 1 has a higher 

variance than Arrow 2, but Arrow I's mean is much lower. Mixing the distribution from 

Arrow 2 with the distribution of Arrow 1 will yield a progression of resulting 
distributions. If Arrow I's mean is much less them Arrow 2's mean, say 6 • (oi +02). the 

resultant distribution will be just that of Arrow 2. The distribution progresses from a 

lump in the left tall (coded as 1") to a blmodal distribution with the left mode smaller 

than the right (coded as "2") as Arrow I's mean approaches Arrow 2's. As the mean of 
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Table 17: Bimodal and Lumpy Distributions for Parallel Paths. 

D. 1*2-1*1 
Oi 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 9.0 10.0 11.0 12.0 

0.0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2.5 0 0 0 1 1 1 0 0 0 -1 -1 0 0 0 0 0 0 0 0 0 0 

3.0 0 0 0 1 1 1 1 2 -1 -1 -I -1 -1 -1 0 0 0 0 0 0 0 

3.5 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -I -1 -1 0 0 0 0 

4.0 0 0 1 1 1 1 1 I -2 -2 2 2 -1 -1 -1 -1 -1 -1 -1 0 0 

4.5 0 1 1 1 1 1 1 1 -2 -2 -2 2 2 2 -1 -1 -1 -1 -1 -1 -1 

5.0 1 1 1 1 1 1 1 1 -2 -2 -2 -2 2 2 2 2 2 -1 -I -1 -1 

5.5 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 2 2 2 2 -1 -1 -1 

6.0 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 2 2 2 2 2 -1 

6.5 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 2 

7.0 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 —2 -2 2 2 2 

7.5 1 1 I 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 2 

8.0 1 1 I 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 2 2 

9.0 1 1 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 

10.0 1 1 1 I I I 1 1 1 I -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 

11.0 1 1 1 1 1 1 1 I 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 

12.0 1 I 1 1 1 1 1 1 1 1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 
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Arrow 1 Increases further, the maximum distribution advances from a bimodal with a 

higher right mode to a bimodal with a hi^er left mode (coded -2). As Arrow I's mean 

gets very much greater than Arrow 2's, the distribution becomes Just that of Arrow I's. 

In this respect, it makes no difference whether A's is the bigger distribution or vice versa. 

This analysis shows that the bimodsil distribution is read. It is a tribute to the 

algorithm that It can generate bimodal distributions. In general, if the top 2 paths have 

means closer than 3 standeird deviations, bimodality does not occur. From algorithm 

data, the possibility of the network duration distribution being either lumpy or bimodal 

can be predicted by whether or not the path with the longest minimum duration is also 

one of the longest maximum duration paths. If the top ranked path does not also have a 

long maximum duration, there is chance for a lumpy or bimodal duration distribution. If 

the longest minimum duration path is also one of the longest maximum duration paths, 

there is no danger of a lumpy distribution. By the top ranked path being long in both 

mlnlmimi and maximum durations, its probabilities close to the minimum network 

duration are reduced and the other long maximum duration paths can interact to make a 

smooth unlmodal distribution. 
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SUMMARY 

A procedure was developed that improves upon CPM and PERT (see Table 18). CPM 

calculates schedule durations and the criticality of activities but only for deterministic 

inputs. PERT starts with probabilistic activity durations and calculates project duration 

distributions but consistently estimates shorter-than-actual project durations, and does 

not provide a measure of arrow criticality. The Singleton procedure uses integer-valued 

activity duration distributions, and calculates duration distributions and Van Slyke 

(1963) criticalities for network arrows. 

The Singleton analysis is relevant to industry practice in at least the following three 

ways. First, integer-valued durations are assumed because industry typically monitors 

project progress and allocates resources on a periodic basis. Integer durations also allow 

for the explicit analysis of tied path dmations—industry experiences simultaneous task 

completions, but analysis with continuous distributions does not allow for ties. Second, 

Van Slyke criticality anedysis focuses on arrows rather than paths, in keeping with the 

fact that industry allocates resources to activities, not paths. Third, emphasis is placed 

upon the project duration range and upon the probabilities of the largest project 

durations when complete network analysis is Impractical. This, again, is in keeping with 

project schedulers selecting dates to Include all but the largest project durations, and 

project managers endeavoring to prevent the longest durations from occurring. 

Probabilistic Integer inputs complicate analysis of scheduling networks. For example, 

the CPM method of taking the maxtaixmi path duration to any node is complex when 

path durations have distributions and the distribution of the maximum of possibly 

correlated path durations involved. The distribution of the maximum of path durations 

has previously been studied. Singleton adapts the work of Martin (1965) in csilculatlng 

project duration distributions. Martin's methods of calculating duration probabflity 

Table 18: Comparison of Singleton Algorithm with CPM smd PERT. 

Singleton CPM PERT 

Probability Input? Yes No Yes 

Critical Activities? Yes Yes No 

Distribution Output? Yes No Yes 
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distributions by using polynomial equations are converted into calculations using 

discrete probabilities. These calculations become demanding for large networks. 

Sin^eton develops methods to calculate Van Slyke crlticalities. The notion of 

cumulative distributions is natural here, in regard to the treatment of dominance and 

ties. Other key concepts are those of Joint distributions, conditional probabilities, £uid 

the Law of Total Probability. The Singleton methods to calculate the Vsm Slyke 

crlticalities are limited by the number of computations required for larger networks, as 

£ire the duration distribution computations. 

By observing that a few long path durations typically are dominant. Singleton 

develops a large-network algorithm that limits the number of calculations needed for 

large networks. The algorithm finds and ranks paths through a network. Arrows from 

paths with long durations are reconstructed into a skeletal network and analyzed by the 

Singleton duration distribution and crlticality methods. 

The large-network algorithm Is applied to the 40-arrow, 22-node Kleindorfer (1971) 

network and was compared against extensive simulations. The algorithm was found to 

exactly calculate the network duration range and right tail probabilities. The algorithm 

also correctly selected the activity arrows with the highest Van Slyke crlticalities and 

avoided serious miscalculation of any crlticalities. Finally, the algorithm correctly 

identified the location of the 2 modes of the Kleindorfer duration distribution. 

The general mechanism responsible for the creation of such bimodallty was 

Investigated by performing an analysis of the maximum duration of 2 parallel 

paths—normally distributed parallel paths can yield bimodsd distributions when both the 

mean and v£iriance of one path are lower than the other path's mean and variance, 

because the left tail probabilities of the path with the larger statistics is "accumulated" 

into the distribution of the path with the lesser statistics. 

Extrapolating from these schematic findings, it is seen that the Singleton algorithm 

will tend to predict a bimodal duration distribution when the path with the longest 

minimum duration is not also one of the paths with the longest maximum durations. 

Stronger clues regarding duration distribution bimodallty are provided by relevant 

algorithm-reported path statistics. 
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